Energy cost assessment of a polar based controller applied to a flexible rotor supported by AMB
被引:1
作者:
Defoy, Benjamin
论文数: 0引用数: 0
h-index: 0
机构:
GE Oil & Gas Thermodyn, 480 Allee G Eiffel,BP 119, F-71203 Le Creusot, FranceGE Oil & Gas Thermodyn, 480 Allee G Eiffel,BP 119, F-71203 Le Creusot, France
Defoy, Benjamin
[1
]
Alban, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
GE Oil & Gas Thermodyn, 480 Allee G Eiffel,BP 119, F-71203 Le Creusot, FranceGE Oil & Gas Thermodyn, 480 Allee G Eiffel,BP 119, F-71203 Le Creusot, France
Alban, Thomas
[1
]
Mahfoud, Jarir
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lyon, INSA Lyon, LaMCoS UMR5259, F-69621 Villeurbanne, FranceGE Oil & Gas Thermodyn, 480 Allee G Eiffel,BP 119, F-71203 Le Creusot, France
Mahfoud, Jarir
[2
]
机构:
[1] GE Oil & Gas Thermodyn, 480 Allee G Eiffel,BP 119, F-71203 Le Creusot, France
[2] Univ Lyon, INSA Lyon, LaMCoS UMR5259, F-69621 Villeurbanne, France
来源:
MECHANICAL ENGINEERING JOURNAL
|
2015年
/
2卷
/
04期
关键词:
AMB;
Active control;
Flexible rotor;
Polar coordinates;
Fuzzy logic;
Experiments;
D O I:
10.1299/mej.15-00114
中图分类号:
TH [机械、仪表工业];
学科分类号:
0802 ;
摘要:
From a designer point of view, optimizing the energy necessary for the control is an important element that could lead to downsize the control cabinet and to an increase of margins according to power amplifier capabilities. Also, reducing the energy used, generates a less significant environmental impact. The aim of this work was to develop and to assess a new approach using polar coordinates to observe and actuate the control of a flexible rotor supported by Active Magnetic Bearings (AMBs). Two fuzzy logic based controllers used to modulate the actuating forces were developed and assessed. The first is a SISO fuzzy PID controller for which the input is the displacement measured along an action line while the output is the force applied in the same direction. The second controller considers each bearing as a single MIMO system with the displacements in the two orthogonal directions as inputs, by managing two significant physical quantities, namely tangential and radial speeds. The "mechanical" performances are compared to those of an augmented PID controller. Then, the energy necessary for the control is compared. The study is first performed numerically and then validated experimentally. The results obtained show that the polar fuzzy controller presents the most suitable mechanical performances and energy costs