LOGARITHMIC CONVEXITY FOR SUPREMUM NORMS OF HARMONIC-FUNCTIONS

被引:30
作者
KOREVAAR, J
MEYERS, JLH
机构
关键词
D O I
10.1112/blms/26.4.353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following convexity property for supremum norms of harmonic functions. Let Omega be a domain in R(n), Omega, and E a subdomain and a compact subset of Omega, respectively. Then there exists a constant alpha = alpha(E,Omega(0),Omega)is an element of(0,1] such that for all harmonic functions u on Omega, the inequality \\u\\(E) less than or equal to \\u\\(alpha)(Omega 0) \\u\\(1-alpha)(Omega) is valid. The case of concentric balls Omega(0) subset of E subset of Omega plays a key role in the proof. For positive harmonic functions on such balls, we determine the sharp constant alpha in the inequality.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 10 条
  • [1] [Anonymous], 1996, TABLES INTEGRALS SER
  • [2] NOTE ON THE DECAY OF SOLUTIONS OF ELLIPTIC-EQUATIONS
    ARMITAGE, DH
    BAGBY, T
    GAUTHIER, PM
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (NOV) : 554 - 556
  • [3] Gilbarg D., 1977, GRUNDLEHREN MATH WIS, V224
  • [4] HAYMAN W. K., 1976, LONDON MATH SOC MONO, V9
  • [5] JANSON S, 1984, LECT NOTES MATH, V1070, P92
  • [6] MEYERS JLH, 1992, THESIS U AMSTERDAM
  • [7] Narasimhan R., 1971, SEVERAL COMPLEX VARI
  • [8] NEVANLINNA R, 1970, GRUNDLEHREN MATH WIS, V162
  • [9] PEETRE J, 1992, COMPLEX VARIABLES TH, V19, P151
  • [10] SOLOMENTSEV E, 1966, AKAD NAUK ARMJAN SSR, V42, P274