CONTROL OF CHAOS IN DELAY-DIFFERENTIAL EQUATIONS, IN A NETWORK OF OSCILLATORS AND IN MODEL CORTEX

被引:28
作者
BABLOYANTZ, A
LOURENCO, C
SEPULCHRE, JA
机构
[1] Service de Chimie-Physique, Université Libre de Bruxelles, B-1050 Bruxelles, CP 231 - Campus Plaine, Boulevard Triomphe
来源
PHYSICA D | 1995年 / 86卷 / 1-2期
关键词
D O I
10.1016/0167-2789(95)00108-G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the Ott-Grebogi-Yorke method to the stabilization of unstable orbits in a network of oscillators exhibiting spatiotemporal chaotic activity, wherein the perturbation is applied to the variables of the system. With the help of numerical simulations we show that a method developed by Pyragas can stabilize unstable orbits in a one variable delay differential equation and in a model cortical network with delay. We discuss the relevance of these results in the physiological processes of the brain.
引用
收藏
页码:274 / 283
页数:10
相关论文
共 32 条
  • [21] CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK
    PYRAGAS, K
    [J]. PHYSICS LETTERS A, 1992, 170 (06) : 421 - 428
  • [22] ROMEIRAS F, 1991, 1991 P AM CONTR C
  • [23] DYNAMIC CONTROL OF A CHAOTIC LASER - EXPERIMENTAL STABILIZATION OF A GLOBALLY COUPLED SYSTEM
    ROY, R
    MURPHY, TW
    MAIER, TD
    GILLS, Z
    HUNT, ER
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (09) : 1259 - 1262
  • [24] Ruelle D., 1978, THERMODYNAMIC FORMAL
  • [25] SCHILLEN TB, 1990, PARALLEL PROCESSING
  • [26] SCHUSTER H, 1990, PARALLEL PROCESSING
  • [27] CONTROLLING CHAOS IN A NETWORK OF OSCILLATORS
    SEPULCHRE, JA
    BABLOYANTZ, A
    [J]. PHYSICAL REVIEW E, 1993, 48 (02): : 945 - 950
  • [28] CONTROLLING A CHAOTIC SYSTEM
    SINGER, J
    WANG, YZ
    BAU, HH
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (09) : 1123 - 1125
  • [29] GLOBAL PROCESSING OF VISUAL-STIMULI IN A NEURAL NETWORK OF COUPLED OSCILLATORS
    SOMPOLINSKY, H
    GOLOMB, D
    KLEINFELD, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (18) : 7200 - 7204
  • [30] Sparrow C., 1982, LORENZ EQUATIONS BIF