ZEROS OF PADE APPROXIMANTS FOR ENTIRE-FUNCTIONS WITH SMOOTH MACLAURIN COEFFICIENTS

被引:1
作者
KOVACHEVA, R [1 ]
SAFF, EB [1 ]
机构
[1] UNIV S FLORIDA,INST CONSTRUCT MATH,DEPT MATH,TAMPA,FL 33620
关键词
D O I
10.1006/jath.1994.1133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For entire functions f(z) = SIGMA(j=0)infinitya(j)z(j) whose coefficients satisfy the smoothness condition a(j) + 1a(j-1)/a(j)2 --> eta as j --> infinity we investigate the asymptotic behavior as n --> infinity of the normalized partial sums s(n)(za(n)/a(n+1) and the normalized Pade numerators P(n,m)(za(n)/a(n+1), m fixed. As a consequence we deduce results on the limiting behavior of the zeros of these polynomials. (C) 1994 Academic Press, Inc.
引用
收藏
页码:347 / 384
页数:38
相关论文
共 9 条
[1]  
Baker GA., 1975, ESSENTIALS PADE APPR
[2]  
BAKER GA, 1981, ENCY MATH ITS APPLIC
[3]  
Conte SD., 1972, ELEMENTARY NUMERICAL
[4]  
ERDEI A, 1983, LECTURE NOTES MATH, V1002
[5]  
GONCHAR AA, 1972, MAT SBORNIK, P146
[6]   UNIFORM-CONVERGENCE OF ROWS OF THE PADE TABLE FOR FUNCTIONS WITH SMOOTH MACLAURIN SERIES COEFFICIENTS [J].
LUBINSKY, DS .
CONSTRUCTIVE APPROXIMATION, 1987, 3 (03) :307-330
[7]   CONVERGENCE OF PADE APPROXIMANTS OF PARTIAL THETA-FUNCTIONS AND THE ROGERS-SZEGO POLYNOMIALS [J].
LUBINSKY, DS ;
SAFF, EB .
CONSTRUCTIVE APPROXIMATION, 1987, 3 (04) :331-361
[8]  
Perron O, 1957, LEHRE KETTENBRUCHEN
[9]   ZEROS AND POLES OF PADE APPROXIMANTS TO EZ [J].
SAFF, EB ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1975, 25 (01) :1-14