PERIODIC-SOLUTIONS TO SOME PROBLEMS OF N-BODY TYPE

被引:25
作者
MAJER, P [1 ]
TERRACINI, S [1 ]
机构
[1] POLITECN MILAN,DIPARTIMENTO MATEMAT,PIAZZA LEONARDO VINCI 32,MILAN,ITALY
关键词
D O I
10.1007/BF00375608
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of at least one T-periodic solution to a dynamical system of the type [GRAPHICS] where the potentials V(ij) are T-periodic in t and singular at the origin, u(i) is-an-element-of R(k), i = 1, ..., n, and k greater-than-or-equal-to 3. We also provide estimates on the H-1 norm of this solution. The proofs are based on a variant of the Ljusternik-Schnirelman method. The results here generalize to the n-body problem some results obtained by BAHRI & RABINOWITZ on the 3-body problem in [6].
引用
收藏
页码:381 / 404
页数:24
相关论文
共 24 条
[1]   CRITICAL-POINTS WITH LACK OF COMPACTNESS AND SINGULAR DYNAMICAL-SYSTEMS [J].
AMBROSETTI, A ;
ZELATI, VC .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 149 :237-259
[2]  
AMBROSETTI A, 1988, ANN I H POINCARE-AN, V5, P287
[3]  
AMBROSETTI A, 1990, ANN I H POINCARE ANA, V7, P477
[4]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[5]   A MINIMAX METHOD FOR A CLASS OF HAMILTONIAN-SYSTEMS WITH SINGULAR POTENTIALS [J].
BAHRI, A ;
RABINOWITZ, PH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 82 (02) :412-428
[6]   PERIODIC-SOLUTIONS OF HAMILTONIAN-SYSTEMS OF 3-BODY TYPE [J].
BAHRI, A ;
RABINOWITZ, PH .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (06) :561-649
[7]  
BESSI U, 1990, SYMMETRIES NONCOLLOS
[8]  
Degiovanni M., 1988, ANN SCUOLA NORM-SCI, V15, P467
[9]  
GORDON W, 1975, AM J MATH, V99, P961
[10]   CONSERVATIVE DYNAMICAL-SYSTEMS INVOLVING STRONG FORCES [J].
GORDON, WB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 204 (APR) :113-135