NUMERICAL VISCOSITIES OF DIFFERENCE-SCHEMES

被引:2
作者
RAMSHAW, JD
机构
[1] Idaho National Engineering Laboratory, Idaho Falls, Idaho, 83415
来源
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING | 1994年 / 10卷 / 11期
关键词
Differential equations - Eigenvalues and eigenfunctions - Error analysis - System stability - Tensors;
D O I
10.1002/cnm.1640101108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Numerical visocisities of finite-difference schemes are usually obtained from truncation-error analyses based on Taylor series expansions. Here we observe that numerical viscosities can also be obtained very simply and directly from the growth factor xi in a conventional Fourier stability analysis. A general formula is derived for the numerical viscosity in terms of the first and second derivatives of xi with respect to the wavenumber k, evaluate at k = 0. A single Fourier analysis therefore suffices to determine both stability limits and numerical viscosities.
引用
收藏
页码:927 / 931
页数:5
相关论文
共 10 条
[1]  
Anderson D. A., 2020, COMPUTATIONAL FLUID, VFourth
[2]  
[Anonymous], 1983, METHOD DIFFERENTIAL
[3]  
Hirsch C., 1988, NUMERICAL COMPUTATIO, V1
[4]  
Hirt C. W., 1968, J COMPUT PHYS, V2, P339, DOI [10.1016/0021-9991(68)90041-7, DOI 10.1016/0021-9991(68)90041-7]
[5]  
PEYRET R, 1983, COMPUTATIONAL METHOD
[6]   SIMPLIFIED HEURISTIC FOURIER-ANALYSIS OF ITERATION CONVERGENCE-RATES [J].
RAMSHAW, JD ;
MESINA, GL .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1994, 10 (06) :481-487
[7]  
Richtmyer RD., 1967, DIFFERENCE METHODS I
[8]  
Roache P.J., 1976, COMPUTATIONAL FLUID
[9]   ARTIFICIAL VISCOSITY [J].
ROACHE, PJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1972, 10 (02) :169-+
[10]   MODIFIED EQUATION APPROACH TO STABILITY AND ACCURACY ANALYSIS OF FINITE-DIFFERENCE METHODS [J].
WARMING, RF ;
HYETT, BJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 1974, 14 (02) :159-179