FLUCTUATIONAL DISTRIBUTION FUNCTION OF SOLITONS IN THE NONLINEAR SCHRODINGER SYSTEM

被引:6
作者
MALOMED, BA
FLYTZANIS, N
机构
[1] UNIV CRETE,DEPT PHYS,POB 470,GR-71409 IRAKLION,GREECE
[2] TEL AVIV UNIV,SCH MATH SCI,DEPT APPL MATH,IL-69978 TEL AVIV,ISRAEL
[3] TECH UNIV DENMARK,DK-2800 LYNGBY,DENMARK
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 01期
关键词
D O I
10.1103/PhysRevE.48.R5
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive the Fokker-Planck equation for the soliton amplitude distribution function in the damped nonlinear Schrodinger system under the influence of thermal fluctuations. The regular solutions are obtained in terms of the Kummer functions. Physical applications are discussed.
引用
收藏
页码:R5 / R8
页数:4
相关论文
共 50 条
[11]   On the Dynamics of Solitons in the Nonlinear Schrodinger Equation [J].
Benci, Vieri ;
Ghimenti, Marco ;
Micheletti, Anna Maria .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) :467-492
[12]   Alfven solitons in the coupled derivative nonlinear Schrodinger system with symbolic computation [J].
Xu, Tao ;
Tian, Bo ;
Zhang, Cheng ;
Meng, Xiang-Hua ;
Lue, Xing .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (41)
[13]   Solitons and Gibbs Measures for Nonlinear Schrodinger Equations [J].
Kirkpatrick, K. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2012, 7 (02) :95-112
[14]   Moving solitons in the discrete nonlinear Schrodinger equation [J].
Oxtoby, O. F. ;
Barashenkov, I. V. .
PHYSICAL REVIEW E, 2007, 76 (03)
[15]   Relaxation of solitons in nonlinear Schrodinger equations with potential [J].
Gang, Zhou ;
Sigal, I. M. .
ADVANCES IN MATHEMATICS, 2007, 216 (02) :443-490
[16]   Bipolar solitons of the focusing nonlinear Schrodinger equation [J].
Liu, Zhongxuan ;
Feng, Qi ;
Lin, Chengyou ;
Chen, Zhaoyang ;
Ding, Yingchun .
PHYSICA B-CONDENSED MATTER, 2016, 501 :117-122
[17]   Perturbation theory for the modified nonlinear Schrodinger solitons [J].
Shchesnovich, V.S. ;
Doktorov, E.V. .
Physica D: Nonlinear Phenomena, 1999, 129 (01) :115-129
[18]   INTERACTION BETWEEN 2 NONLINEAR SCHRODINGER SOLITONS [J].
ZOU, FW ;
YAN, JR .
CHINESE PHYSICS LETTERS, 1994, 11 (05) :265-268
[19]   Perturbation theory for the modified nonlinear Schrodinger solitons [J].
Shchesnovich, VS ;
Doktorov, EV .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 129 (1-2) :115-129
[20]   NONLINEAR SCHRODINGER SOLITONS IN THE FORCED TODA LATTICE [J].
KAUP, DJ .
PHYSICA D, 1987, 25 (1-3) :361-368