FLUCTUATIONAL DISTRIBUTION FUNCTION OF SOLITONS IN THE NONLINEAR SCHRODINGER SYSTEM

被引:6
|
作者
MALOMED, BA
FLYTZANIS, N
机构
[1] UNIV CRETE,DEPT PHYS,POB 470,GR-71409 IRAKLION,GREECE
[2] TEL AVIV UNIV,SCH MATH SCI,DEPT APPL MATH,IL-69978 TEL AVIV,ISRAEL
[3] TECH UNIV DENMARK,DK-2800 LYNGBY,DENMARK
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 01期
关键词
D O I
10.1103/PhysRevE.48.R5
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive the Fokker-Planck equation for the soliton amplitude distribution function in the damped nonlinear Schrodinger system under the influence of thermal fluctuations. The regular solutions are obtained in terms of the Kummer functions. Physical applications are discussed.
引用
收藏
页码:R5 / R8
页数:4
相关论文
共 50 条
  • [1] Stability of periodic optical solitons for a nonlinear Schrodinger system
    Pava, Jaime Angulo
    Ferreira, Ademir Pastor
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 927 - 959
  • [2] Unperturbed and perturbed nonlinear Schrodinger system for optical fiber solitons
    Moussa, R
    Goumri-Said, S
    Aourag, H
    PHYSICS LETTERS A, 2000, 266 (2-3) : 173 - 182
  • [3] Periodic solitons and their interactions for a general coupled nonlinear Schrodinger system
    Zhang, Ling-Ling
    Wang, Xiao-Min
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 105 : 198 - 208
  • [4] The existence of discrete solitons for the discrete coupled nonlinear Schrodinger system
    Huang, Meihua
    Zhou, Zhan
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [5] GAP SOLITONS IN PERIODIC SCHRODINGER LATTICE SYSTEM WITH NONLINEAR HOPPING
    Chen, Ming
    Pankov, Alexander
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [6] NONLINEAR SCHRODINGER SOLITONS IN A PERIODIC STRUCTURE
    SIPE, JE
    WINFUL, HG
    OPTICS LETTERS, 1988, 13 (02) : 132 - 133
  • [7] Gaussian solitons in nonlinear Schrodinger equation
    Nassar, AB
    Bassalo, JMF
    Alencar, PTS
    de Souza, JF
    de Oliveira, JE
    Cattani, M
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2002, 117 (08): : 941 - 946
  • [8] Solitons of the generalized nonlinear Schrodinger equation
    Tsoy, Eduard N.
    Suyunov, Laziz A.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414
  • [9] Bragg solitons and the nonlinear Schrodinger equation
    de Sterke, CM
    Eggleton, BJ
    PHYSICAL REVIEW E, 1999, 59 (01) : 1267 - 1269
  • [10] Colliding Solitons for the Nonlinear Schrodinger Equation
    Abou Salem, W. K.
    Froehlich, J.
    Sigal, I. M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) : 151 - 176