EXACT BLOW-UP SOLUTIONS TO THE CAUCHY-PROBLEM FOR THE DAVEY-STEWARTSON SYSTEMS

被引:59
作者
OZAWA, T [1 ]
机构
[1] KYOTO UNIV, MATH SCI RES INST, KYOTO 606, JAPAN
来源
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES | 1992年 / 436卷 / 1897期
关键词
D O I
10.1098/rspa.1992.0022
中图分类号
学科分类号
摘要
We present exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems. It is shown that for any prescribed blow-up time there is an exact solution whose mass density converges to the Dirac measure as time goes to the blow-up time and that the solution extends beyond the blow-up time and behaves like the free solution as time tends to infinity.
引用
收藏
页码:345 / 349
页数:5
相关论文
共 21 条
[1]   SOLITON SOLUTIONS OF DAVEY-STEWARTSON EQUATION FOR LONG WAVES [J].
ANKER, D ;
FREEMAN, NC .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 360 (1703) :529-540
[2]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[3]  
CAZENAVE T, 1992, IN PRESS P R SOC EDI
[4]  
CAZENAVE T, 1989, TEXTOS METODOS MATEM, V22
[5]  
CAZENAVE T, 1990, RAPIDLY DECAYING SOL
[6]   3-DIMENSIONAL PACKETS OF SURFACE-WAVES [J].
DAVEY, A ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) :101-110
[7]   2-DIMENSIONAL PACKETS OF CAPILLARY-GRAVITY WAVES [J].
DJORDJEVIC, VD ;
REDEKOPP, LG .
JOURNAL OF FLUID MECHANICS, 1977, 79 (MAR23) :703-714
[8]   RECURSION OPERATORS AND BI-HAMILTONIAN STRUCTURES IN MULTIDIMENSIONS .2. [J].
FOKAS, AS ;
SANTINI, PM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (03) :449-474
[9]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[10]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32