BOUNDARY-BEHAVIOR OF FUNCTIONS ON COMPLETE MANIFOLDS OF NEGATIVE CURVATURE

被引:3
作者
ARAI, H
机构
关键词
D O I
10.2748/tmj/1178227828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:307 / 319
页数:13
相关论文
共 19 条
[1]   NEGATIVELY CURVED MANIFOLDS, ELLIPTIC-OPERATORS, AND THE MARTIN BOUNDARY [J].
ANCONA, A .
ANNALS OF MATHEMATICS, 1987, 125 (03) :495-536
[2]   POSITIVE HARMONIC-FUNCTIONS ON COMPLETE MANIFOLDS OF NEGATIVE CURVATURE [J].
ANDERSON, MT ;
SCHOEN, R .
ANNALS OF MATHEMATICS, 1985, 121 (03) :429-461
[3]   HARMONIC-ANALYSIS ON NEGATIVELY CURVED MANIFOLDS .1. [J].
ARAI, H .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1987, 63 (07) :239-242
[4]  
BRELOT M, 1963, ANN I FOURIER, V13, P359
[5]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640
[6]  
Chavel I., 1984, EIGENVALUES RIEMANNI
[7]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[8]  
DOOB JL, 1984, CLASSICAL POTENTIAL
[9]   VISIBILITY MANIFOLDS [J].
EBERLEIN, P ;
ONEILL, B .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 46 (01) :45-109
[10]  
GILBARG D, 1984, ELLIPTIC PARTIAL DIF