TENSOR PRODUCT OF DIFFERENCE POSETS AND EFFECT ALGEBRAS

被引:12
作者
DVURECENSKIJ, A
机构
[1] Mathematical Institute, Slovak Academy of Sciences, Bratislava
关键词
D O I
10.1007/BF00676246
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A tenser product of difference posets and/or, equivalently, of effect algebras, which generalize orthoalgebras and orthomodular posers, is defined, and an equivalent condition is presented. The proof uses the notion of D-test spaces generalizing test spaces of Randall and Foulis. in particular, we show that a tenser product for difference posers with a nonempty system of probability measures exists.
引用
收藏
页码:1337 / 1348
页数:12
相关论文
共 27 条
  • [1] AERTS D, 1978, HELV PHYS ACTA, V51, P661
  • [2] Busch P., 1991, QUANTUM THEORY MEASU
  • [3] TENSOR PRODUCT OF DIFFERENCE POSETS
    DVURECENSKIJ, A
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (03) : 1043 - 1057
  • [4] DVURECENSKIJ A, 1994, REPORTS MATH PHYSICS, V34, P151
  • [5] FOULIS D, 1993, TENSOR PRODUCT BOOLE
  • [6] Foulis D. J., 1994, F PHYSICS, V24, P1325
  • [7] TENSOR-PRODUCTS OF ORTHOALGEBRAS
    FOULIS, DJ
    BENNETT, MK
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1993, 10 (03): : 271 - 282
  • [8] COUPLED PHYSICAL SYSTEMS
    FOULIS, DJ
    [J]. FOUNDATIONS OF PHYSICS, 1989, 19 (07) : 905 - 922
  • [9] FOULIS DJ, 1992, INT J THEORETICAL PH, V31, P787
  • [10] Foulis DJ, 1981, INTERPRETATION FDN Q, P9