LIFE-SPAN OF CLASSICAL-SOLUTIONS TO NONLINEAR-WAVE EQUATIONS IN 4-DIMENSIONS SPACES

被引:0
作者
LI, TT [1 ]
ZHOU, Y [1 ]
机构
[1] FUDAN UNIV,INST MATH,SHANGHAI 200433,PEOPLES R CHINA
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1995年 / 320卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we prove that in prove dimensions spaces L. Hormander's estimate (T) over tilde (epsilon) greater than or equal to exp {a epsilon(-1)} can be improved in (T) over tilde (epsilon) greater than or equal to exp {a epsilon(-2)} for the lower bound of the life-span (T) over tilde (epsilon) of classical classical solutions to the Cauchy problem with small initial data for nonlinear wave equations of the form square u = F (u, Du, D-x Du) where F (<(lambda)over cap>) = O (\<(lambda)over cap>\(2)) in a neighbourhood of <(lambda)over cap> = 0.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 13 条
[1]  
HORMANDER L, 1991, IMA VOLUMES MATH ITS, P51
[2]  
Li T., 1994, NONLINEAR WORLD, V1, P35
[3]  
Li T., 1993, J PARTIAL DIFFERENTI, V6, P17
[4]  
LI TT, 1992, NONLINEAR ANAL-THEOR, V19, P833, DOI 10.1016/0362-546X(92)90054-I
[5]   LIFE-SPAN OF CLASSICAL-SOLUTIONS TO FULLY NONLINEAR-WAVE EQUATIONS [J].
LI, TT ;
YU, X .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (6-7) :909-940
[6]  
LI TT, 1994, J MATH PURE APPL, V73, P223
[7]  
LI TT, 1991, CR ACAD SCI I-MATH, V312, P337
[8]  
LI TT, 1991, CR ACAD SCI I-MATH, V312, P103
[9]  
LI TT, 1992, CHINESE ANN MATH B, P266
[10]  
Lindblad H., 1989, THESIS LUND