NUMERICAL COMPUTATION OF SYMMETRY-BREAKING BIFURCATION POINTS

被引:4
|
作者
ATTILI, BS
机构
关键词
D O I
10.1017/S0334270000007293
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider symmetry-breaking bifurcation points which arise in parameter-dependent nonlinear equations of the form f (x,lambda) = 0. These types of bifurcation points are connected to pitchfork bifurcation points. A direct method is used to compute such points. Multiple shooting is used to discretise the two-point boundary-value problems to obtain a finite-dimensional problem.
引用
收藏
页码:103 / 113
页数:11
相关论文
共 50 条
  • [41] INTERACTION OF A HOPF-BIFURCATION AND A SYMMETRY-BREAKING BIFURCATION - STOCHASTIC POTENTIAL AND SPATIAL CORRELATIONS
    LEMARCHAND, A
    LEMARCHAND, H
    SULPICE, E
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 613 - 654
  • [42] A DISCUSSION OF SYMMETRY AND SYMMETRY-BREAKING
    GOLUBITSKY, M
    SCHAEFFER, D
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 40 : 499 - 515
  • [43] Numerical computation of degenerate Hopf bifurcation points
    Xu, H
    Janovsky, V
    Werner, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1998, 78 (12): : 807 - 821
  • [44] Symmetry-breaking bifurcation for necrotic tumor model with two free boundaries
    Chen, Junying
    Xing, Ruixiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 84
  • [45] Symmetry-Breaking Bifurcation in Load Resonant DC-DC Converters
    Mandal, Kuntal
    Banerjee, Soumitro
    Chakraborty, Chandan
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1327 - 1330
  • [46] On symmetry-breaking bifurcation in the periodic parameter-switching Lorenz oscillator
    ZHANG Chun
    HAN XiuJing
    BI QinSheng
    Science China(Technological Sciences), 2013, 56 (09) : 2310 - 2316
  • [47] On symmetry-breaking bifurcation in the periodic parameter-switching Lorenz oscillator
    Zhang Chun
    Han XiuJing
    Bi QinSheng
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (09) : 2310 - 2316
  • [48] On symmetry-breaking bifurcation in the periodic parameter-switching Lorenz oscillator
    ZHANG Chun
    HAN XiuJing
    BI QinSheng
    Science China(Technological Sciences), 2013, (09) : 2310 - 2316
  • [49] SYMMETRY-BREAKING BIFURCATION IN NONLINEAR SCHRODINGER/GROSS-PITAEVSKII EQUATIONS
    Kirr, E. W.
    Kevrekidis, P. G.
    Shlizerman, E.
    Weinstein, M. I.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) : 566 - 604
  • [50] Computer assisted proof to symmetry-breaking bifurcation phenomena in nonlinear vibration
    Tadashi Kawanago
    Japan Journal of Industrial and Applied Mathematics, 2004, 21 : 75 - 108