A Novel Adaptive Neural MPPT Algorithm for Photovoltaic System

被引:1
作者
Allahyari, S. A. [1 ]
Taheri, N. [2 ]
Zadehbagheri, M. [3 ]
Rahimkhani, Z. [4 ]
机构
[1] Islamic Azad Univ, Mehriz Branch, Mehriz, Iran
[2] Tech & Vocat Univ, Elect Engn Dept, Sabzevar, Iran
[3] Islamic Azad Univ, Yasouj Branch, Yasuj, Kohgiloyeh & Bo, Iran
[4] Islamic Azad Univ, Sarvestan Branch, Sarvestan, Iran
关键词
Photovoltaic systems; adaptive neural networks; MPPT algorithm;
D O I
10.15282/ijame.15.3.2018.2.0417
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a novel adaptive neural network (ANN) for maximum power point tracking (MPPT) in photovoltaic (PV) systems under variable working conditions. The ANN-based MPPT model includes two separate NNs for PV system identification and control. NNs are trained by using of a novel back propagation algorithm in pre/ post control phases. Because of online optimal performance of NNs, the proposed method, not only overcome the common drawbacks of the conventional MPPT methods, but also gives a simple and a robust MPPT scheme. Simulation results, which carried on MATLAB, show that proposed controller is the most effective in comparison with conventional MPPT approaches.
引用
收藏
页码:5421 / 5434
页数:14
相关论文
共 20 条
[11]   Adaptive Feedback Linearization Based NeuroFuzzy Maximum Power Point Tracking for a Photovoltaic System [J].
Mumtaz, Sidra ;
Ahmad, Saghir ;
Khan, Laiq ;
Ali, Saima ;
Kamal, Tariq ;
Hassan, Syed Zulqadar .
ENERGIES, 2018, 11 (03)
[12]   Hybrid Microgrid Model Based on Solar Photovoltaic Battery Fuel Cell System for Intermittent Load Applications [J].
Patterson, Maxx ;
Macia, Narciso F. ;
Kannan, Arunachala M. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2015, 30 (01) :359-366
[13]   Hill climbing hysteresis of perovskite-based solar cells: a maximum power point tracking investigation [J].
Pellet, Norman ;
Giordano, Fabrizio ;
Dar, M. Ibrahim ;
Gregori, Giuliano ;
Zakeeruddin, Shaik Mohammed ;
Maier, Joachim ;
Graetzel, Michael .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (11) :942-950
[14]   Hybrid concentrated solar thermal power systems: A review [J].
Powell, Kody M. ;
Rashid, Khalid ;
Ellingwood, Kevin ;
Tuttle, Jake ;
Iverson, Brian D. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 80 :215-237
[15]   A comprehensive comparison of different MPPT techniques for photovoltaic systems [J].
Rezk, Hegazy ;
Eltamaly, Ali M. .
SOLAR ENERGY, 2015, 112 :1-11
[16]  
Rezvani A., 2015, INDIAN J SCI TECHNOL, V8, P87, DOI 10.17485/ijst/2015/v8i1/54277
[17]   A review of key power system stability challenges for large-scale PV integration [J].
Shah, Rakibuzzaman ;
Mithulananthan, N. ;
Bansal, R. C. ;
Ramachandaramurthy, V. K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 41 :1423-1436
[18]   A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT [J].
Sher, Hadeed Ahmed ;
Murtaza, Ali Faisal ;
Noman, Abdullah ;
Addoweesh, Khaled E. ;
Al-Haddad, Kamal ;
Chiaberge, Marcello .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (04) :1426-1434
[19]  
Sunanda S., 2015, RENEW SUST ENERG REV, V50, P755
[20]   Application of improved chicken swarm optimization for MPPT in photovoltaic system [J].
Wu, Zhongqiang ;
Yu, Danqi ;
Kang, Xiaohua .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (02) :1029-1042