COMPLETE SOLUTION OF THE LOCAL MINIMA IN THE XOR PROBLEM

被引:23
作者
LISBOA, PJG
PERANTONIS, SJ
机构
[1] UNIV LIVERPOOL,DEPT ELECT ENGN & ELECTR,LIVERPOOL L69 3BX,ENGLAND
[2] UNIV LIVERPOOL,DEPT APPL MATH & THEORET PHYS,LIVERPOOL L69 3BX,ENGLAND
[3] UNIV LIVERPOOL,DEPT COMP SCI,LIVERPOOL L69 3BX,ENGLAND
关键词
D O I
10.1088/0954-898X/2/1/007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A complete solution of the excitation values which may occur at the local minima of the XOR problem is obtained analytically for two-layered networks in the two most commonly quoted configurations, using the gradient backpropagation algorithm. The role of direct connections which bypass the two-layered system is discussed in connection to the XOR problem and other related training tasks.
引用
收藏
页码:119 / 124
页数:6
相关论文
共 5 条
[1]   CONVERGENCE OF RECURSIVE ASSOCIATIVE MEMORIES OBTAINED USING THE MULTILAYERED PERCEPTRON [J].
LISBOA, PJG ;
PERANTONIS, SJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (17) :4039-4053
[2]  
Minsky ML, 1969, PERCEPTRONS
[3]  
Rumelhart David E., 1987, LEARNING INTERNAL RE, P318
[4]   LEARNING REPRESENTATIONS BY BACK-PROPAGATING ERRORS [J].
RUMELHART, DE ;
HINTON, GE ;
WILLIAMS, RJ .
NATURE, 1986, 323 (6088) :533-536
[5]  
WALLACE DJ, 1987, COMPUTATIONAL PHYSIC, P168