Mapping Splicing Quantitative Trait Loci in RNA-Seq

被引:6
作者
Jia, Cheng [1 ]
Hu, Yu [1 ]
Liu, Yichuan [1 ]
Li, Mingyao [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
关键词
alternative splicing; quantitative trait loci; RNA-Seq;
D O I
10.4137/CIN.S24832
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BACKGROUND: One of the major mechanisms of generating mRNA diversity is alternative splicing, a regulated process that allows for the flexibility of producing functionally different proteins from the same genomic sequences. This process is often altered in cancer cells to produce aberrant proteins that drive the progression of cancer. A better understanding of the misregulation of alternative splicing will shed light on the development of novel targets for pharmacological interventions of cancer. METHODS: In this study, we evaluated three statistical methods, random effects meta-regression, beta regression, and generalized linear mixed effects model, for the analysis of splicing quantitative trait loci (sQTL) using RNA-Seq data. All the three methods use exon-inclusion levels estimated by the PennSeq algorithm, a statistical method that utilizes paired-end reads and accounts for non-uniform sequencing coverage. RESULTS: Using both simulated and real RNA-Seq datasets, we compared these three methods with GLiMMPS, a recently developed method for sQTL analysis. Our results indicate that the most reliable and powerful method was the random effects meta-regression approach, which identified sQTLs at low false discovery rates but higher power when compared to GLiMMPS. CONCLUSIONS: We have evaluated three statistical methods for the analysis of sQTLs in RNA-Seq. Results from our study will be instructive for researchers in selecting the appropriate statistical methods for sQTL analysis.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 24 条
[1]   An integrated map of genetic variation from 1,092 human genomes [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Schmidt, Jeanette P. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Dinh, Huyen ;
Kovar, Christie ;
Lee, Sandra ;
Lewis, Lora ;
Muzny, Donna ;
Reid, Jeff ;
Wang, Min ;
Wang, Jun ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Li, Zhuo ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Su, Zhe ;
Tai, Shuaishuai ;
Tang, Meifang .
NATURE, 2012, 491 (7422) :56-65
[2]  
Coulombe-Huntington J, 2009, PLOS GENET, V5
[3]   Common polymorphic transcript variation in human disease [J].
Fraser, Hunter B. ;
Xie, Xiaohui .
GENOME RESEARCH, 2009, 19 (04) :567-575
[4]   Modelling and simulating generic RNA-Seq experiments with the flux simulator [J].
Griebel, Thasso ;
Zacher, Benedikt ;
Ribeca, Paolo ;
Raineri, Emanuele ;
Lacroix, Vincent ;
Guigo, Roderic ;
Sammeth, Michael .
NUCLEIC ACIDS RESEARCH, 2012, 40 (20) :10073-10083
[5]   A Global View of Cancer-Specific Transcript Variants by Subtractive Transcriptome-Wide Analysis [J].
He, Chunjiang ;
Zhou, Fang ;
Zuo, Zhixiang ;
Cheng, Hanhua ;
Zhou, Rongjia .
PLOS ONE, 2009, 4 (03)
[6]   Tissue-Specific Genetic Control of Splicing: Implications for the Study of Complex Traits [J].
Heinzen, Erin L. ;
Ge, Dongliang ;
Cronin, Kenneth D. ;
Maia, Jessica M. ;
Shianna, Kevin V. ;
Gabriel, Willow N. ;
Welsh-Bohmer, Kathleen A. ;
Hulette, Christine M. ;
Denny, Thomas N. ;
Goldstein, David B. .
PLOS BIOLOGY, 2008, 6 (12) :2869-2879
[7]   PennSeq: accurate isoform-specific gene expression quantification in RNA-Seq by modeling non-uniform read distribution [J].
Hu, Yu ;
Liu, Yichuan ;
Mao, Xianyun ;
Jia, Cheng ;
Ferguson, Jane F. ;
Xue, Chenyi ;
Reilly, Muredach P. ;
Li, Hongzhe ;
Li, Mingyao .
NUCLEIC ACIDS RESEARCH, 2014, 42 (03) :e20
[8]   Analysis and design of RNA sequencing experiments for identifying isoform regulation [J].
Katz, Yarden ;
Wang, Eric T. ;
Airoldi, Edoardo M. ;
Burge, Christopher B. .
NATURE METHODS, 2010, 7 (12) :1009-U101
[9]   Genome-wide analysis of transcript isoform variation in humans [J].
Kwan, Tony ;
Benovoy, David ;
Dias, Christel ;
Gurd, Scott ;
Provencher, Cathy ;
Beaulieu, Patrick ;
Hudson, Thomas J. ;
Sladek, Rob ;
Majewski, Jacek .
NATURE GENETICS, 2008, 40 (02) :225-231
[10]   Transcriptome and genome sequencing uncovers functional variation in humans [J].
Lappalainen, Tuuli ;
Sammeth, Michael ;
Friedlaender, Marc R. ;
't Hoen, Peter A. C. ;
Monlong, Jean ;
Rivas, Manuel A. ;
Gonzalez-Porta, Mar ;
Kurbatova, Natalja ;
Griebel, Thasso ;
Ferreira, Pedro G. ;
Barann, Matthias ;
Wieland, Thomas ;
Greger, Liliana ;
van Iterson, Maarten ;
Almloef, Jonas ;
Ribeca, Paolo ;
Pulyakhina, Irina ;
Esser, Daniela ;
Giger, Thomas ;
Tikhonov, Andrew ;
Sultan, Marc ;
Bertier, Gabrielle ;
MacArthur, Daniel G. ;
Lek, Monkol ;
Lizano, Esther ;
Buermans, Henk P. J. ;
Padioleau, Ismael ;
Schwarzmayr, Thomas ;
Karlberg, Olof ;
Ongen, Halit ;
Kilpinen, Helena ;
Beltran, Sergi ;
Gut, Marta ;
Kahlem, Katja ;
Amstislavskiy, Vyacheslav ;
Stegle, Oliver ;
Pirinen, Matti ;
Montgomery, Stephen B. ;
Donnelly, Peter ;
McCarthy, Mark I. ;
Flicek, Paul ;
Strom, Tim M. ;
Lehrach, Hans ;
Schreiber, Stefan ;
Sudbrak, Ralf ;
Carracedo, Angel ;
Antonarakis, Stylianos E. ;
Haesler, Robert ;
Syvaenen, Ann-Christine ;
Van Ommen, Gert-Jan .
NATURE, 2013, 501 (7468) :506-511