PERIRHINAL AND PARAHIPPOCAMPAL CORTICES OF THE MACAQUE MONKEY - CORTICAL AFFERENTS

被引:860
作者
SUZUKI, WA [1 ]
AMARAL, DG [1 ]
机构
[1] SUNY STONY BROOK, CTR BEHAV NEUROSCI, STONY BROOK, NY 11794 USA
关键词
HIPPOCAMPAL FORMATION; MEMORY; ENTORHINAL CORTEX; POLYSENSORY CORTEX; MEDIAL TEMPORAL LOBE;
D O I
10.1002/cne.903500402
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuropsychological studies have recently demonstrated that the macaque monkey perirhinal (areas 35 and 36) and parahippocampal (areas TH and TF) cortices contribute importantly to normal memory function. Unfortunately, neuroanatomical information concerning the cytoarchitectonic organization and extrinsic connectivity of these cortical regions is meager. We investigated the organization of cortical inputs to the macaque monkey perirhinal and parahippocampal cortices by placing discrete injections of the retrograde tracers fast blue, diamidino yellow, and wheat germ agglutinin conjugated to horseradish peroxidase throughout these areas. We found that the macaque monkey perirhinal and parahippocampal cortices receive different complements of cortical inputs. The major cortical inputs to the perirhinal cortex arise from the unimodal visual areas TE and rostral TEO and from area TF of the parahippocampal cortex. The perirhinal cortex also receives projections from the dysgranular and granular subdivisions of the insular cortex and from area 13 of the orbitofrontal cortex. In contrast, area TF of the parahippocampal cortex receives its strongest input from more caudal visual areas V4, TEO, and caudal TE, as well as prominent inputs from polymodal association cortices, including the retrosplenial cortex and the dorsal bank of the superior temporal sulcus. Area TF also receives projections from areas 7a and LIP of the posterior parietal lobe, insular cortex, and areas 46, 13, 45, and 9 of the frontal lobe. As with area TF, area TH receives substantial projections from the retrosplenial cortex as well as moderate projections from the dorsal bank of the superior temporal sulcus; unlike area TF, area TH receives almost no innervation from areas TE and TEO. It does, however, receive relatively strong inputs from auditory association areas on the convexity of the superior temporal gyrus. (C) 1994 Wiley-Liley, Inc.
引用
收藏
页码:497 / 533
页数:37
相关论文
共 108 条
[1]   THE ENTORHINAL CORTEX OF THE MONKEY .1. CYTOARCHITECTONIC ORGANIZATION [J].
AMARAL, DG ;
INSAUSTI, R ;
COWAN, WM .
JOURNAL OF COMPARATIVE NEUROLOGY, 1987, 264 (03) :326-355
[2]   AN AIR-PRESSURE SYSTEM FOR THE INJECTION OF TRACER SUBSTANCES INTO THE BRAIN [J].
AMARAL, DG ;
PRICE, JL .
JOURNAL OF NEUROSCIENCE METHODS, 1983, 9 (01) :35-43
[3]  
ANDERSEN RA, 1989, ANNU REV NEUROSCI, V12, P377, DOI 10.1146/annurev.ne.12.030189.002113
[4]   CORTICOCORTICAL CONNECTIONS OF ANATOMICALLY AND PHYSIOLOGICALLY DEFINED SUBDIVISIONS WITHIN THE INFERIOR PARIETAL LOBULE [J].
ANDERSEN, RA ;
ASANUMA, C ;
ESSICK, G ;
SIEGEL, RM .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 296 (01) :65-113
[5]   HIPPOCAMPECTOMIZED MONKEYS CAN REMEMBER ONE PLACE BUT NOT 2 [J].
ANGELI, SJ ;
MURRAY, EA ;
MISHKIN, M .
NEUROPSYCHOLOGIA, 1993, 31 (10) :1021-1030
[6]   THE DUALITY OF THE CINGULATE GYRUS IN MONKEY - NEUROANATOMICAL STUDY AND FUNCTIONAL HYPOTHESIS [J].
BALEYDIER, C ;
MAUGUIERE, F .
BRAIN, 1980, 103 (SEP) :525-554
[7]   CORTICAL AFFERENT INPUT TO THE PRINCIPALIS REGION OF THE RHESUS-MONKEY [J].
BARBAS, H ;
MESULAM, MM .
NEUROSCIENCE, 1985, 15 (03) :619-+
[8]   EFFERENT CORTICAL CONNECTIONS OF MULTIMODAL CORTEX OF THE SUPERIOR TEMPORAL SULCUS IN THE RHESUS-MONKEY [J].
BARNES, CL ;
PANDYA, DN .
JOURNAL OF COMPARATIVE NEUROLOGY, 1992, 318 (02) :222-244
[9]   POSTERIOR BIPARIETAL ABLATIONS IN THE MONKEY - CHANGES TO NEUROLOGICAL AND BEHAVIORAL TESTING [J].
BATES, JAV ;
ETTLINGER, G .
ARCHIVES OF NEUROLOGY, 1960, 3 (AUG) :177-192
[10]  
BAYLIS GC, 1987, J NEUROSCI, V7, P330