On Generalizations of Extending Modules

被引:0
作者
Karabacak, Fathi [1 ]
机构
[1] Anadolu Univ, Educ Fac, Dept Math, TR-26470 Eskisehir, Turkey
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2009年 / 49卷 / 03期
关键词
SIP-extending modules; summand intersection property; extending modules;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A module M is said to be SIP-extending if the intersection of every pair of direct summands is essential in a direct summand of M. SIP-extending modules are a proper generalization of both SIP-modules and extending modules. Every direct summand of an SIP-module is an SIP-module just as a direct summand of an extending module is extending. While it is known that a direct sum of SIP-extending modules is not necessarily SIP-extending, the question about direct summands of an SIP-extending module to be SIP-extending remains open. In this study, we show that a direct summand of an SIP-extending module inherits this property under some conditions. Some related results are included about C-11 and SIP-modules.
引用
收藏
页码:557 / 562
页数:6
相关论文
共 17 条
  • [1] Anderson F. W., 1974, RINGS CATEGORIES MOD
  • [2] A CHARACTERIZATION OF MODULES WITH THE SUMMAND INTERSECTION PROPERTY
    ARNOLD, DM
    HAUSEN, J
    [J]. COMMUNICATIONS IN ALGEBRA, 1990, 18 (02) : 519 - 528
  • [3] When is the SIP (SSP) property inherited by free modules
    Birkenmeier, G. F.
    Karabacak, F.
    Tercan, A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2006, 112 (1-2) : 103 - 106
  • [4] Birkenmeier G. F., 1999, COMMUN ALGEBRA, V27, P3785
  • [5] Dung N. V., 1990, EXTENDING MODULES
  • [6] MODULES WITH THE SUMMAND INTERSECTION PROPERTY
    HAUSEN, J
    [J]. COMMUNICATIONS IN ALGEBRA, 1989, 17 (01) : 135 - 148
  • [7] Kaplansky I., 1969, INFINITE ABELIAN GRO
  • [8] On modules and matrix rings with sip-extending
    Karabacak, F.
    Tercan, A.
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (04): : 1037 - 1044
  • [9] Matrix rings with summand intersection property
    Karabacak, F
    Tercan, A
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2003, 53 (03) : 621 - 626
  • [10] Armendariz rings and reduced rings
    Kim, NK
    Lee, Y
    [J]. JOURNAL OF ALGEBRA, 2000, 223 (02) : 477 - 488