MATRIX CONVEXITY OF FUNCTIONS OF 2 VARIABLES

被引:12
作者
AUJLA, JS
机构
[1] Department of Applied Mathematics Regional Engineering College, Jalandhar
关键词
D O I
10.1016/0024-3795(93)90119-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I, J be intervals such that 0 is-an-element-of I and J. Let M(m) be the algebra of all m x m complex matrices, and let M(m)(I) be the set of all hermitian members of M. whose spectrum is contained in I. Let pi(m) be the set of all hermitian projections in M(m). We give a complete characterization of the set of functions f:I X J --> R which satisfy the inequality (P X Q)f(PAP, QBQ)(P X Q) less-than-or-equal-to (P X Q)f(A, B)(P X Q) for all A is-an-element-of M(m)(I), B is-an-element-of M(n)(J), P is-an-element-of pi(m), Q is-an-element-of pi(n). We also generalize some results on matrix convexity of functions of one variable to the case of functions of two variables.
引用
收藏
页码:149 / 160
页数:12
相关论文
共 8 条
[1]  
ANDO T, 1978, UNPUB LECTURE NOTES
[2]  
DAVIS C, 1957, P AM MATH, V3, P42
[3]  
DAVIS C, 1963, P S PURE MATH, V7, P187
[4]  
Donoghue W., 1974, MONOTONE MATRIX FUNC
[5]   JENSEN INEQUALITY FOR OPERATORS AND LOWNER THEOREM [J].
HANSEN, F ;
PEDERSEN, GK .
MATHEMATISCHE ANNALEN, 1982, 258 (03) :229-241
[6]  
KORANYI A., 1961, T AM MATH SOC, V101, P521
[7]   On convex matrix functions [J].
Kraus, F .
MATHEMATISCHE ZEITSCHRIFT, 1936, 41 :18-42
[8]   On monotonous matrix functions. [J].
Lowner, K .
MATHEMATISCHE ZEITSCHRIFT, 1934, 38 :177-216