Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring

被引:0
作者
Yeh, Cheng [1 ]
Kao, Fu-Cheng [2 ,3 ,4 ]
Wei, Po-Han [1 ]
Pal, Arnab [1 ,5 ]
Kaswan, Kuldeep [1 ,5 ]
Huang, Yan-Tsz [1 ]
Parashar, Parag [1 ]
Yeh, Hsuan-Yu [6 ]
Wang, Ting-Wei [2 ]
Tiwari, Naveen [1 ]
Tsai, Tsung-Ting [4 ]
Huang, Yu-Fen [2 ,7 ]
Lin, Zong-Hong [1 ,8 ,9 ,10 ]
机构
[1] Natl Tsing Hua Univ, Inst Biomed Engn, Hsinchu, Taiwan
[2] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan
[3] Chang Gung Mem Hosp, Dept Orthopaed Surg, Taoyuan, Taiwan
[4] Chang Gung Univ, Coll Med, Taoyuan, Taiwan
[5] Natl Tsing Hua Univ, Int Intercollegiate PhD Program, Hsinchu, Taiwan
[6] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan
[7] Natl Tsing Hua Univ, Inst Analyt & Environm Sci, Hsinchu, Taiwan
[8] Natl Tsing Hua Univ, Dept Power Mech Engn, Hsinchu, Taiwan
[9] Natl Tsing Hua Univ, Dept Chem, Hsinchu, Taiwan
[10] Natl Tsing Hua Univ, Frontier Res Ctr Fundamental & Appl Sci Matters, Hsinchu, Taiwan
关键词
Triboelectric nanogenerator; Self-powered sensor; Solid-liquid contact electrification; Gait analysis; Bioinspired structure; Shark skin;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Real-time gait monitoring is crucial for neuromuscular diagnosis and rehabilitation of neuromuscular ailments. However, the existing wearable sensors for gait analysis suffer from several drawbacks, such as external power requirement, poor sensitivity, short-term stability, and professional operator requirement, which restrict their applicability outside clinical settings. Here, a next-generation self-powered solid-liquid triboelectric nanogenerator-based flexible wearable sensor is developed. The proposed sensor is composed of a highly resilient liquid metal encapsulated within an innovative bio-mimicked shark skin-like microstructure embedded on the Ecoflex surface. The unique surface morphology imparts hydrophobicity to the solid triboelectric layer, which prevents the liquid metal adhesion during sensing and facilitates highly sensitive real-time monitoring of signals and long-term stability. The as-designed low-cost, highly scalable self-powered sensor, which is also compatible with diverse detection strategies, provides an on-demand user-friendly point-of-care gait detection and reha-bilitation monitoring system with significant applications in personalized health care and sports science.
引用
收藏
页数:11
相关论文
共 64 条
[31]   A new method for producing "Lotus Effect" on a biomimetic shark skin [J].
Liu, Yunhong ;
Li, Guangji .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 388 :235-242
[32]   Functional Connectivity of Vermis Correlates with Future Gait Impairments in Parkinson's Disease [J].
Maiti, Baijayanta ;
Rawson, Kerri S. ;
Tanenbaum, Aaron B. ;
Koller, Jonathan M. ;
Snyder, Abraham Z. ;
Campbell, Meghan C. ;
Earhart, Gammon M. ;
Perlmutter, Joel S. .
MOVEMENT DISORDERS, 2021, 36 (11) :2559-2568
[33]  
Mannsfeld SCB, 2010, NAT MATER, V9, P859, DOI [10.1038/nmat2834, 10.1038/NMAT2834]
[34]   Gait impairments in Parkinson's disease [J].
Mirelman, Anat ;
Bonato, Paolo ;
Camicioli, Richard ;
Ellis, Terry D. ;
Giladi, Nir ;
Hamilton, Jamie L. ;
Hass, Chris J. ;
Hausdorff, Jeffrey M. ;
Pelosin, Elisa ;
Almeida, Quincy J. .
LANCET NEUROLOGY, 2019, 18 (07) :697-708
[35]   Gastrocnemius Medialis and Vastus Lateralis in vivo muscle-tendon behavior during running at increasing speeds [J].
Monte, Andrea ;
Baltzopoulos, Vasilios ;
Maganaris, Constantinos N. ;
Zamparo, Paola .
SCANDINAVIAN JOURNAL OF MEDICINE & SCIENCE IN SPORTS, 2020, 30 (07) :1163-1176
[36]   Abnormalities in muscle function during gait in relation to the level of lumbar disc herniation [J].
Morag, E ;
Hurwitz, DE ;
Andriacchi, TP ;
Hickey, M ;
Andersson, GBJ .
SPINE, 2000, 25 (07) :829-833
[37]  
Nandy A., 2021, MODERN METHODS AFFOR, P1, DOI [10.1016/b978-0-323-85245-6.00012-6, DOI 10.1016/B978-0-323-85245-6.00012-6]
[38]   The effects of light touch on gait and dynamic balance during normal and tandem walking in individuals with an incomplete spinal cord injury [J].
Oates, Alison R. ;
Arora, Tarun ;
Lanovaz, Joel L. ;
Musselman, Kristin E. .
SPINAL CORD, 2021, 59 (02) :159-166
[39]   Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries [J].
Oh, Yong Suk ;
Kim, Jae-Hwan ;
Xie, Zhaoqian ;
Cho, Seokjoo ;
Han, Hyeonseok ;
Jeon, Sung Woo ;
Park, Minsu ;
Namkoong, Myeong ;
Avila, Raudel ;
Song, Zhen ;
Lee, Sung-Uk ;
Ko, Kabseok ;
Lee, Jungyup ;
Lee, Je-Sang ;
Min, Weon Gi ;
Lee, Byeong-Ju ;
Choi, Myungwoo ;
Chung, Ha Uk ;
Kim, Jongwon ;
Han, Mengdi ;
Koo, Jahyun ;
Choi, Yeon Sik ;
Kwak, Sung Soo ;
Kim, Sung Bong ;
Kim, Jeonghyun ;
Choi, Jungil ;
Kang, Chang-Mo ;
Kim, Jong Uk ;
Kwon, Kyeongha ;
Won, Sang Min ;
Baek, Janice Mihyun ;
Lee, Yujin ;
Kim, So Young ;
Lu, Wei ;
Vazquez-Guardado, Abraham ;
Jeong, Hyoyoung ;
Ryu, Hanjun ;
Lee, Geumbee ;
Kim, Kyuyoung ;
Kim, Seunghwan ;
Kim, Min Seong ;
Choi, Jungrak ;
Choi, Dong Yun ;
Yang, Quansan ;
Zhao, Hangbo ;
Bai, Wubin ;
Jang, Hokyung ;
Yu, Yongjoon ;
Lim, Jaeman ;
Guo, Xu .
NATURE COMMUNICATIONS, 2021, 12 (01)
[40]   A Highly Sensitive Mercury Ion Sensor Based on Solid-Liquid Contact Electrification [J].
Pal, Arnab ;
Chatterjee, Subhodeep ;
Saha, Subhajit ;
Barman, Snigdha Roy ;
Choi, Dukhyun ;
Lee, Sangmin ;
Lin, Zong-Hong .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2020, 9 (11)