ANALYSIS OF A VISCOELASTIC FRICTIONLESS CONTACT PROBLEM WITH ADHESION

被引:0
作者
Touzaline, Arezki [1 ]
机构
[1] USTHB, Fac Math, Lab Syst Dynam, BP 32 EL ALIA, Bab Ezzouar 16111, Algeria
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2010年 / 55卷 / 05期
关键词
viscoelastic; normal compliance; adhesion; frictionless; contact; weak solution; fixed point;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a quasistatic frictionless contact problem for viscoelastic bodies with long memory. The contact is modelled with normal compliance in such a way that the penetration is limited and restricted to unilateral contraints. The adhesion between contact surfaces is taken into account and the evolution of the bonding field is described by a first order differential equation. We derive a variational formulation of the mechanical problem and we establish an existence and uniqueness result by using arguments of time-dependent variational inequalities, differential equations and Banach fixed point theorem. Moreover, using compactness properties we study a regularized problem which has a unique solution and we obtain the solution of the original model by passing to the limit as the regularization parameter converges to zero.
引用
收藏
页码:411 / 430
页数:20
相关论文
共 24 条
[1]   Existence results for quasistatic contact problems with Coulomb friction [J].
Andersson, LE .
APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 42 (02) :169-202
[2]  
Cangemi L, 1997, THESIS
[3]   Dynamic frictionless contact with adhesion [J].
Chau, O ;
Shillor, M ;
Sofonea, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (01) :32-47
[4]   Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion [J].
Chau, O ;
Fernández, JR ;
Shillor, M ;
Sofonea, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 159 (02) :431-465
[5]   Existence results for unilateral quasistatic contact problems with friction and adhesion [J].
Cocu, M ;
Rocca, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (05) :981-1001
[6]  
Duvaut G., 1972, INEQUATIONS MECANIQU
[7]  
Eck C, 2005, PURE APPL MATH
[8]   Analysis and numerical simulations of a dynamic contact problem with adhesion [J].
Fernández, JR ;
Shillor, M ;
Sofonea, M .
MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (12-13) :1317-1333
[9]  
Fr~emond M., 2002, NONSMOOTH THERMOMECH
[10]  
FREMOND M, 1987, J MEC THEOR APPL, V6, P383