Forced Oscillations of Nonlinear Hyperbolic Equations with Functional Arguments via Riccati Method

被引:0
作者
Shoukaku, Yutaka [1 ]
机构
[1] Kanazawa Univ, Fac Engn, Kanazawa, Ishikawa 9201192, Japan
来源
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL | 2010年
关键词
Forced oscillation; hyperbolic equations; Riccati inequality; interval criteria;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using integral averaging method and a generalized Riccati technique, sufficient conditions are established for the oscillation of solutions of forced nonlinear hyperbolic equations with functional arguments.
引用
收藏
页码:122 / 153
页数:32
相关论文
共 23 条
[1]   Oscillation criteria for certain forced second-order nonlinear differential equations with delayed argument [J].
Çakmak, D ;
Tiryaki, A .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) :1647-1653
[2]  
Cui SL, 2009, DIFFER EQUAT APPL, V1, P379
[4]  
Han ZY, 2007, KYUNGPOOK MATH J, V47, P347
[5]  
Kusano T., 1975, ANN MAT PUR APPL, V106, P171, DOI [10.1007/BF02415027, DOI 10.1007/BF02415027]
[6]  
Li W. N., 2000, DEMONSTRATIO MATH, V33, P319
[7]  
Li W. T, 1998, NIHONKAI MATH J, V9, P205
[8]   Oscillation criteria for second-order nonlinear differential equations with integrable coefficient [J].
Li, WT ;
Li, XH .
APPLIED MATHEMATICS LETTERS, 2000, 13 (08) :1-6
[9]   Interval oscillation criteria related to integral averaging technique for certain nonlinear differential equations [J].
Li, WT ;
Agarwal, RP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (01) :171-188
[10]  
Mohyud-Din S.T., 2009, MATH PROB ENG