WITT EQUIVALENCE OF GLOBAL FIELDS .2. RELATIVE QUADRATIC EXTENSIONS

被引:2
作者
SZYMICZEK, K
机构
关键词
WITT EQUIVALENCE; RELATIVE QUADRATIC EXTENSIONS; HASSE PRINCIPLE;
D O I
10.2307/2154533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper explores the consequences of the Hasse Principle for Witt equivalence of global fields in the case of relative quadratic extensions. We are primarily interested in generating the Witt equivalence classes of quadratic extensions of a given number field, and we study the structure of the class, the number of classes, and the structure of the set of classes. Along the way, we reprove several results obtained earlier in the absolute case of the rational ground field, giving unified and short proofs based on the Hasse Principle.
引用
收藏
页码:277 / 303
页数:27
相关论文
共 11 条
[1]   FINITENESS THEOREMS FOR FORMS OVER GLOBAL FIELDS [J].
CARPENTER, JP .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :153-166
[2]   ON RECIPROCITY EQUIVALENCE OF QUADRATIC NUMBER-FIELDS [J].
CZOGALA, A .
ACTA ARITHMETICA, 1991, 58 (01) :27-46
[3]  
CZOGALA A, 1991, MATH SLOVACA, V41, P251
[4]  
JACOB WB, IN PRESS CONT MATH
[5]  
JAKUBEC S, 1992, MATH COMPUT, V58, P355
[6]  
Lam T.Y., 1980, ALGEBRAIC THEORY QUA
[7]  
OMEARA OT, 1971, INTRO QUADRATIC FORM
[8]  
PERLIS R, 1990, RECENT ADV REAL ALGE
[9]   WITT EQUIVALENCE OF GLOBAL FIELDS [J].
SZYMICZEK, K .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (04) :1125-1149
[10]  
SZYMICZEK K, 1991, MATH SLOVACA, V0041, P00315