A DEGREE CONDITION FOR THE EXISTENCE OF K-FACTORS

被引:34
作者
NISHIMURA, T
机构
[1] Department of Mathematics, Akashi College of Technology Nishioka, Akashi, 674, Uozumi
关键词
D O I
10.1002/jgt.3190160205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an integer such that k greater-than-or-equal-to 3, and let G be a connected graph of order n with n greater-than-or-equal-to 4k - 3, kn even, and minimum degree at least k. We prove that if G satisfies max(deg(u), deg(upsilon)) greater-than-or-equal-to n/2 for each pair of nonadjacent vertices u, upsilon in G, then G has a k-factor.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 7 条
[1]  
BONDY JA, 1976, GRAPH THEORY APPLICA
[2]  
EGAWA Y, 1989, RECENT STUDIES GRAPH, P96
[3]   NEW SUFFICIENT CONDITIONS FOR CYCLES IN GRAPHS [J].
FAN, GH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (03) :221-227
[4]   AN ORE-TYPE CONDITION FOR THE EXISTENCE OF K-FACTORS IN GRAPHS [J].
IIDA, T ;
NISHIMURA, T .
GRAPHS AND COMBINATORICS, 1991, 7 (04) :353-361
[5]   MINIMUM DEGREE OF A GRAPH AND THE EXISTENCE OF K-FACTORS [J].
KATERINIS, P .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1985, 94 (2-3) :123-127
[6]   BINDING NUMBERS OF GRAPHS AND THE EXISTENCE OF K-FACTORS [J].
KATERINIS, P ;
WOODALL, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1987, 38 (150) :221-228
[7]   THE FACTORS OF GRAPHS [J].
TUTTE, WT .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1952, 4 (03) :314-328