Bounds on subspace codes based on totally isotropic subspaces in unitary spaces

被引:4
作者
Gao, You [1 ]
Zhao, Liyum [1 ]
Wang, Gang [1 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
关键词
Subspace codes; bounds; unitary spaces; totally isotropic subspaces; Steiner structure;
D O I
10.1142/S1793830916500567
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Sphere-packing bound, Singleton bound, Wang-Xing-Safavi-Naini bound, Johnson bound and Gilbert-Varshamov bound on the subspace codes (n, M, d, m)(q) based on m-dimensional totally isotropic subspaces in unitary space F-q2((n)) over finite fields F-q2 are presented. Then, we prove that (n, M, d, m)(q) codes based on m-dimensional totally isotropic subspaces in unitary space F-q2((n)) attain the Wang-Xing-Safavi-Naini bound if and only if they are certain Steiner structures in F-q2((n)).
引用
收藏
页数:14
相关论文
共 13 条