Tunnel Field-Effect Transistors in 2-D Transition Metal Dichalcogenide Materials

被引:169
作者
Ilatikhameneh, Hesameddin [1 ]
Tan, Yaohua [1 ]
Novakovic, Bozidar [1 ]
Klimeck, Gerhard [1 ]
Rahman, Rajib [1 ]
Appenzeller, Joerg [2 ]
机构
[1] Purdue Univ, Dept Elect & Comp Engn, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Elect & Comp Engn, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
来源
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS | 2015年 / 1卷
基金
美国国家科学基金会;
关键词
MoS2; MoTe2; Nonequilibrium Green's Function (NEGF); Scaling theory; Transition Metal Dichalcogenide (TMD); Tunnel Field-Effect Transistor (TFET); WSe2; WTe2;
D O I
10.1109/JXCDC.2015.2423096
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the performance of tunnel field-effect transistors (TFETs) based on 2-D transition metal dichalcogenide (TMD) materials is investigated by atomistic quantum transport simulations. One of the major challenges of TFETs is their low ON-currents. 2-D material-based TFETs can have tight gate control and high electric fields at the tunnel junction, and can, in principle, generate high ON-currents along with a subthreshold swing (SS) smaller than 60 mV/decade. Our simulations reveal that high-performance TMD TFETs not only require good gate control, but also rely on the choice of the right channel material with optimum bandgap, effective mass, and source/drain doping level. Unlike previous works, a full-band atomistic tight-binding method is used self-consistently with 3-D Poisson equation to simulate ballistic quantum transport in these devices. The effect of the choice of the TMD material on the performance of the device and its transfer characteristics are discussed. Moreover, the criteria for high ON-currents are explained with a simple analytic model, showing the related fundamental factors. Finally, the SS and energy delay of these TFETs are compared with conventional CMOS devices.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 43 条
[1]   Monolayer MoS2 Transistors Beyond the Technology Road Map [J].
Alam, Khairul ;
Lake, Roger K. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (12) :3250-3254
[2]  
[Anonymous], 2013, INT TECHNOLOGY ROADM
[3]   Band-to-band tunneling in carbon nanotube field-effect transistors [J].
Appenzeller, J ;
Lin, YM ;
Knoch, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :196805-1
[4]   Comparing carbon nanotube transistors - The ideal choice: A novel tunneling device design [J].
Appenzeller, J ;
Lin, YM ;
Knoch, J ;
Chen, ZH ;
Avouris, P .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (12) :2568-2576
[5]   Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 [J].
Cheiwchanchamnangij, Tawinan ;
Lambrecht, Walter R. L. .
PHYSICAL REVIEW B, 2012, 85 (20)
[6]  
Chen Z, 2008, INT EL DEVICES MEET, P509
[7]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[8]   Toward Low-Power Electronics: Tunneling Phenomena in Transition Metal Dichalcogenides [J].
Das, Saptarshi ;
Prakash, Abhijith ;
Salazar, Ramon ;
Appenzeller, Joerg .
ACS NANO, 2014, 8 (02) :1681-1689
[9]   Diameter dependence of mechanical, electronic, and structural properties of InAs and InP nanowires: A first-principles study [J].
dos Santos, Claudia L. ;
Piquini, Paulo .
PHYSICAL REVIEW B, 2010, 81 (07)
[10]   Efficient and realistic device modeling from atomic detail to the nanoscale [J].
Fonseca, J. E. ;
Kubis, T. ;
Povolotskyi, M. ;
Novakovic, B. ;
Ajoy, A. ;
Hegde, G. ;
Ilatikhameneh, H. ;
Jiang, Z. ;
Sengupta, P. ;
Tan, Y. ;
Klimeck, G. .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2013, 12 (04) :592-600