DIRECTING ORBITS OF CHAOTIC DYNAMICAL-SYSTEMS

被引:33
作者
PASKOTA, M
MEES, AI
TEO, KL
机构
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1995年 / 5卷 / 02期
关键词
D O I
10.1142/S0218127495000478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the directing of orbits of discrete chaotic dynamical systems towards desired targets. Our aim is to significantly reduce the time needed to reach a target region by applying only small, bounded perturbations. We derive an open-loop control from methods of optimal control theory, and we discuss the effects of random dynamical noise on the open-loop control.
引用
收藏
页码:573 / 583
页数:11
相关论文
共 23 条
[1]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[2]  
Chen G., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P407, DOI 10.1142/S0218127492000392
[3]  
CHEN G, 1994, CONTROL SYNCHRONIZAT
[4]   FROM CHAOS TO ORDER - PERSPECTIVES AND METHODOLOGIES IN CONTROLLING CHAOTIC NONLINEAR DYNAMICAL SYSTEMS [J].
Chen, Guanrong ;
Dong, Xiaoning .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1363-1409
[5]   MODEL-REFERENCE CONTROL OF NONLINEAR-SYSTEMS VIA IMPLICIT FUNCTION EMULATION [J].
GOH, CJ .
INTERNATIONAL JOURNAL OF CONTROL, 1994, 60 (01) :91-115
[6]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[7]  
JACKSON EA, 1991, PHYSICA D, V50, P341, DOI 10.1016/0167-2789(91)90004-S
[8]  
Jennings L., 1990, MISER3 OPTIMAL CONTR
[9]   HIGHER-DIMENSIONAL TARGETING [J].
KOSTELICH, EJ ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW E, 1993, 47 (01) :305-310
[10]   CONTROLLING CHAOTIC DYNAMIC-SYSTEMS USING TIME-DELAY COORDINATES [J].
NITSCHE, G ;
DRESSLER, U .
PHYSICA D, 1992, 58 (1-4) :153-164