WHEN THE LEADING TERMS IN THE HEAT-EQUATION ASYMPTOTICS ARE COERCIVE
被引:0
|
作者:
BLAZIC, N
论文数: 0引用数: 0
h-index: 0
机构:UNIV OREGON,DEPT MATH,EUGENE,OR 97403
BLAZIC, N
BOKAN, N
论文数: 0引用数: 0
h-index: 0
机构:UNIV OREGON,DEPT MATH,EUGENE,OR 97403
BOKAN, N
BRANSON, T
论文数: 0引用数: 0
h-index: 0
机构:UNIV OREGON,DEPT MATH,EUGENE,OR 97403
BRANSON, T
GILKEY, P
论文数: 0引用数: 0
h-index: 0
机构:UNIV OREGON,DEPT MATH,EUGENE,OR 97403
GILKEY, P
机构:
[1] UNIV OREGON,DEPT MATH,EUGENE,OR 97403
[2] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52242
来源:
HOUSTON JOURNAL OF MATHEMATICS
|
1995年
/
21卷
/
01期
关键词:
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let M be a compact Riemannian manifold without boundary of dimension m greater than or equal to 2. Let a(n)(D) be the asymptotics of the heat equation for n greater than or equal to 3. If D is the p form valued Laplacian for 0 less than or equal to p less than or equal to m, the a(n) lead to coercive estimates for the highest order jets of the covariant derivatives of the curvature tenser for any n. If D is the conformal Laplacian, the a(n) lead to coercive estimates if and only if 2n is not an element of {m - 2, m - 1, m}. If D is the spinor Laplacian, the a(n) lead to coercive estimates if and only if 2n > m.