WHEN THE LEADING TERMS IN THE HEAT-EQUATION ASYMPTOTICS ARE COERCIVE

被引:0
|
作者
BLAZIC, N
BOKAN, N
BRANSON, T
GILKEY, P
机构
[1] UNIV OREGON,DEPT MATH,EUGENE,OR 97403
[2] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52242
来源
HOUSTON JOURNAL OF MATHEMATICS | 1995年 / 21卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact Riemannian manifold without boundary of dimension m greater than or equal to 2. Let a(n)(D) be the asymptotics of the heat equation for n greater than or equal to 3. If D is the p form valued Laplacian for 0 less than or equal to p less than or equal to m, the a(n) lead to coercive estimates for the highest order jets of the covariant derivatives of the curvature tenser for any n. If D is the conformal Laplacian, the a(n) lead to coercive estimates if and only if 2n is not an element of {m - 2, m - 1, m}. If D is the spinor Laplacian, the a(n) lead to coercive estimates if and only if 2n > m.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条