EXACT BOUND-STATES FOR THE CENTRAL FRACTION POWER SINGULAR POTENTIAL V(R)=ALPHA-R(2/3)+BETA-R(-2/3)+GAMMA-R(-4/3)

被引:37
作者
BOSE, SK
机构
[1] Fachbereich Physik, Universität Kaiserslautern, Kaiserslautern
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 1994年 / 109卷 / 11期
关键词
D O I
10.1007/BF02726685
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain here a set of exact bound-state solutions, out of infinite exact bound-state solutions, for the central fraction power singular potential V(r) = = alpha r(2/3) + beta r(-2/3) + gamma r(-4/3) by using a suitable ansatz. The bound-state solutions obtained here are normalizable and for each solution there is an interrelation between the parameters alpha, beta, gamma of the potential and the orbital angular-momentum quantum number l.
引用
收藏
页码:1217 / 1220
页数:4
相关论文
共 12 条
[1]  
Bose S. K., 1992, Journal of Mathematical and Physical Sciences, V26, P129
[2]   EXACT SOLUTION OF THE SCHRODINGER-EQUATION FOR THE CENTRAL NONPOLYNOMIAL POTENTIAL V(R)=R2+LAMBDAR2/(1+GR2) IN 2 AND 3 DIMENSIONS [J].
BOSE, SK ;
VARMA, N .
PHYSICS LETTERS A, 1989, 141 (3-4) :141-146
[3]   AN EXACT SOLUTION OF THE SCHRODINGER WAVE-EQUATION FOR A SEXTIC POTENTIAL - COMMENT [J].
BOSE, SK ;
VARMA, N .
PHYSICS LETTERS A, 1990, 147 (2-3) :85-86
[4]  
BOSE SK, UNPUB NUOVO CIMENT B
[5]   THE ENERGY-LEVELS OF THE SEXTIC DOUBLE-WELL POTENTIAL [J].
CHHAJLANY, SC ;
MALNEV, VN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (16) :3711-3718
[6]  
DUTRA AD, 1991, PHYS REV A, V44, P4721
[7]   ON THE SCHRODINGER-EQUATION FOR THE X2 +LAMBDAX2-(1+GX2) INTERACTION [J].
FLESSAS, GP .
PHYSICS LETTERS A, 1981, 83 (03) :121-122
[8]   DEFINITE INTEGRALS AS SOLUTIONS FOR THE X2+LAMBDAX2/(1+GX2) POTENTIAL [J].
FLESSAS, GP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (03) :L97-L101
[9]   QUANTUM-MECHANICAL SEXTIC ANHARMONIC-OSCILLATORS - NORMALIZABILITY OF WAVE-FUNCTIONS AND SOME EXACT EIGENVALUES [J].
SINGH, CA ;
SINGH, SB ;
SINGH, KD .
PHYSICS LETTERS A, 1990, 148 (8-9) :389-392
[10]   ANALYTIC CONTINUED FRACTION THEORY FOR A CLASS OF CONFINEMENT POTENTIALS [J].
SINGH, V ;
BISWAS, SN ;
DATTA, K .
LETTERS IN MATHEMATICAL PHYSICS, 1979, 3 (01) :73-81