A UNIFIED CONVERGENCE THEORY FOR ABSTRACT MULTIGRID OR MULTILEVEL ALGORITHMS, SERIAL AND PARALLEL

被引:22
作者
DOUGLAS, CC
DOUGLAS, J
机构
[1] YALE UNIV,DEPT COMP SCI,NEW HAVEN,CT 06520
[2] PURDUE UNIV,DEPT MATH,W LAFAYETTE,IN 47907
关键词
MULTIGRID; AGGREGATION; DISAGGREGATION;
D O I
10.1137/0730007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multigrid methods are analyzed in the style of standard iterative methods. A basic error bound is derived in terms of residuals on neighboring levels. The terms in this bound derive from the iterative methods used as smoothers on each level and the operators used to go from a level to the next coarser level. This bound is correct whether the underlying operator is symmetric or nonsymmetric, definite or indefinite, and singular or nonsingular. This paper allows any iterative method as a smoother (or rougher) in the multigrid cycle. While standard multigrid error analysis typically assumes a specific multigrid cycle (e.g., a V, W, or F cycle), analysis for arbitrary multigrid cycles, including adaptively chosen ones, is provided. This theory applies directly to aggregation-disaggregation methods used to solve systems of linear equations.
引用
收藏
页码:136 / 158
页数:23
相关论文
共 53 条
[1]  
Astrakhantsev G. P., 1971, Z VYCISL MAT MAT FIZ, V11, P439
[2]  
Bakhvalov N. S., 1966, ZH VYCH MAT MAT FIZ, V6, P861
[3]   SHARP ESTIMATES FOR MULTIGRID RATES OF CONVERGENCE WITH GENERAL SMOOTHING AND ACCELERATION [J].
BANK, RE ;
DOUGLAS, CC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (04) :617-633
[4]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[5]   A NEW CONVERGENCE PROOF FOR THE MULTIGRID METHOD INCLUDING THE V-CYCLE [J].
BRAESS, D ;
HACKBUSCH, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :967-975
[6]  
BRAMBLE JH, 1991, MATH COMPUT, V56, P1, DOI 10.1090/S0025-5718-1991-1052086-4
[7]  
BRAMBLE JH, 1988, MATH COMPUT, V51, P389, DOI 10.1090/S0025-5718-1988-0930228-6
[8]  
BRAMBLE JH, 1987, MATH COMPUT, V49, P311, DOI 10.1090/S0025-5718-1987-0906174-X
[9]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[10]  
BRANDT A, 1982, MULTIGRID METHODS, P220