THE POWER AND GENERALIZED LOGARITHMIC MEANS

被引:125
|
作者
STOLARSKY, KB
机构
来源
AMERICAN MATHEMATICAL MONTHLY | 1980年 / 87卷 / 07期
关键词
D O I
10.2307/2321420
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:545 / 548
页数:4
相关论文
共 50 条
  • [31] Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
    Ding, Qing
    Zhao, Tiehong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [32] Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
    Qing Ding
    Tiehong Zhao
    Journal of Inequalities and Applications, 2017
  • [33] Bounds for the Convex Combination of Contra-harmonic and Harmonic Means by the Generalized Logarithmic Mean
    Sonubon, Annop
    Orankitjaroen, Somsak
    Nonlaopon, Kamsing
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (03): : 1120 - 1143
  • [34] On generalized logarithmic electrodynamics
    Kruglov, S. I.
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (02):
  • [35] THE GENERALIZED LOGARITHMIC DISTRIBUTION
    HARTMANN, M
    DAUTZENBERG, H
    ACTA POLYMERICA, 1983, 34 (01) : 52 - 60
  • [36] On generalized logarithmic electrodynamics
    S. I. Kruglov
    The European Physical Journal C, 2015, 75
  • [37] Optimal Lower Power Mean Bound for the Convex Combination of Harmonic and Logarithmic Means
    Chu, Yu-Ming
    Wang, Shan-Shan
    Zong, Cheng
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [38] Generalized power means for matrix functions .2.
    Mond, B
    Pecaric, JE
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1996, 48 (3-4): : 201 - 208
  • [39] TAUBERIAN THEOREM FOR LOGARITHMIC MEANS
    PARAMESW.MR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (03): : A376 - A376
  • [40] A non-Gaussian Bayesian filter using power and generalized logarithmic moments
    Wu, Guangyu
    Lindquist, Anders
    AUTOMATICA, 2024, 166