THE COCYCLE LATTICE OF BINARY MATROIDS

被引:8
|
作者
LOVASZ, L
SERESS, A
机构
[1] EOTVOS LORAND UNIV, H-1088 BUDAPEST, HUNGARY
[2] OHIO STATE UNIV, COLUMBUS, OH 43210 USA
[3] PRINCETON UNIV, PRINCETON, NJ 08544 USA
关键词
D O I
10.1006/eujc.1993.1027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the lattice (grid) generated by the incidence vectors of cocycles of a binary matroid and its dual lattice. We characterize those binary matroids for which the obvious characterization yields a polynomial time algorithm to check whether a matroid has this property, and also to construct a basis in the cocycle lattice. For the general case, we prove that every denominator in the dual lattice is a power of 2, and derive upper and lower bounds for the largest exponent. © 1993 Academic Press, Inc.
引用
收藏
页码:241 / 250
页数:10
相关论文
共 50 条
  • [41] Connected hyperplanes in binary matroids
    Lemos, Manoel
    Melo, T. R. B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) : 259 - 274
  • [42] A characterization of binary eulerian matroids
    Shikare, MM
    Raghunathan, TT
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1996, 27 (02): : 153 - 155
  • [43] Involutions of connected binary matroids
    Bonin, JE
    COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (04): : 305 - 308
  • [44] Cocycle superrigidity and rigidity for lattice actions on tori
    Katok, A
    Lewis, J
    Zimmer, R
    TOPOLOGY, 1996, 35 (01) : 27 - 38
  • [45] Lattice path matroids: Structural properties
    Bonin, JE
    de Mier, A
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (05) : 701 - 738
  • [46] Efficient Representation of Lattice Path Matroids
    Padro, Carles
    ANNALS OF COMBINATORICS, 2024,
  • [47] BERGMAN COMPLEXES OF LATTICE PATH MATROIDS
    Delucchi, Emanuele
    Dlugosch, Martin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) : 1916 - 1930
  • [48] Splines, lattice points, and arithmetic matroids
    Lenz, Matthias
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 43 (02) : 277 - 324
  • [49] ON LATTICE-THEORETICAL CONSTRUCTION OF MATROIDS
    Mao, Hua
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2013, 59 (01): : 201 - 208
  • [50] Standard Complexes of Matroids and Lattice Paths
    Engstrom, Alexander
    Sanyal, Raman
    Stump, Christian
    VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (03) : 763 - 779