HOMOGENIZATION OF NONSTATIONARY NAVIER-STOKES EQUATIONS IN A DOMAIN WITH A GRAINED BOUNDARY

被引:80
作者
MIKELIC, A [1 ]
机构
[1] RUDJER BOSKOVIC INST, POB 1016, YU-41001 ZAGREB, CROATIA
关键词
D O I
10.1007/BF01759303
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the convergence of the homogenization process for a nonstationary Navier-Stokes system in a porous medium. The result of homogenization is Darcy's law, as in the case of the Stokes equation, but the convergence of pressures is in a different function space.
引用
收藏
页码:167 / 179
页数:13
相关论文
共 8 条
[1]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[2]  
CATTABRIGA L., 1961, REND SEMIN MAT U PAD, V31, P308
[3]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[4]  
Lions J.-L., 1969, QUELQUES M THODES R
[5]  
Rudin W., 1973, FUNCTIONAL ANAL
[6]  
SANCHEZPALENCIA E, 1980, LECTURE NOTES PHYSIC, V127
[7]  
TARTAR L, 1980, LECTURE NOTES PHYSIC, V127
[8]  
Temam R, 1979, STUDIES MATH ITS APP, V2