The Euler ring of the rotation group

被引:0
作者
Dieck, Tammo Tom [1 ]
机构
[1] Georg August Univ Gottingen, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
来源
MUENSTER JOURNAL OF MATHEMATICS | 2012年 / 5卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Euler rings for the closed subgroups of a compact Lie group are part of a Green functor on the universal induction category associated to this group. We use these structural data in order to obtain general information about the multiplicative structure: idempotent elements, units, restriction homomorphisms. We then apply these results to the group SO3. Also some classical elementary geometry is interpreted in this algebraic context.
引用
收藏
页码:107 / 119
页数:13
相关论文
共 12 条
[1]  
Bourbaki N., 1961, ACTUAL SCI IND, V1290
[2]  
Brocker Theodor, 1995, GRADUATE TEXTS MATH, V98
[3]  
Dieck T.tom, 1987, DEGRUYTER STUDIES MA, V8
[4]  
Dieck TT, 2008, EMS TEXTB MATH, P1
[5]   Some remarks on the Euler ring U (G) [J].
Geba, Kazimierz ;
Rybicki, Slawomir .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2008, 3 (01) :143-158
[6]  
Hoffmann J.-P., 1999, EULERRING SU2
[7]   MOBIUS FUNCTION IN FINITE-GROUP AND BURNSIDE RINGS [J].
KRATZER, C ;
THEVENAZ, J .
COMMENTARII MATHEMATICI HELVETICI, 1984, 59 (03) :425-438
[8]   WEIGHT SYSTEMS FOR SO(3)-ACTIONS [J].
OLIVER, R .
ANNALS OF MATHEMATICS, 1979, 110 (02) :227-241
[9]   FIXED-POINT SETS OF GROUP ACTIONS ON FINITE ACYCLIC COMPLEXES [J].
OLIVER, R .
COMMENTARII MATHEMATICI HELVETICI, 1975, 50 (02) :155-177
[10]  
Schwanzl R., 1975, BURNSIDERING SPEZIEL