THE GROWTH OF THE MAXIMAL TERM OF DIRICHLET SERIES

被引:2
作者
Filevych, P., V [1 ]
Hrybel, O. B. [1 ]
机构
[1] Vasyl Stefanyk Precarpathian Natl Univ, 57 Shevchenka Str, UA-76018 Ivano Frankivsk, Ukraine
关键词
Dirichlet series; maximal term; central index; generalized order;
D O I
10.15330/cmp.10.1.79-81
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Lambda be the class of nonnegative sequences (lambda(n)) increasing to +infinity, A is an element of(-infinity, +infinity], L-A be the class of continuous functions increasing to +infinity on [A(0), A), (lambda(n)) is an element of Lambda, and F (s) = Sigma a(n)e(s lambda n) be a Dirichlet series such that its maximum term mu(sigma, F) = max(n) vertical bar a(n)vertical bar e(sigma lambda n) is defined for every sigma is an element of (-infinity, A). It is proved that for all functions alpha is an element of L+infinity and beta is an element of L-A the equality rho(*)(alpha,beta)(F) = max((eta n)is an element of Lambda) (lim) over bar (n ->infinity) alpha(eta(n))/beta(eta(n)/lambda(n) + 1/lambda(n) ln 1/vertical bar a(n)vertical bar holds, where rho(*)(alpha,beta)(F) is the generalized alpha,beta-order of the function ln mu(sigma, F), i.e. rho(alpha,)beta(*)(F) = 0 if the function mu(sigma, Gamma) is bounded on (-infinity, A), and rho(*)(alpha,beta)(F) = (lim) over bar (sigma up arrow A) alpha(ln mu(sigma, Gamma)) / beta(sigma) if the function sigma(sigma, F) is unbounded on (-infinity, A).
引用
收藏
页码:79 / 81
页数:3
相关论文
共 3 条
  • [1] GENERALIZED TYPES OF THE GROWTH OF DIRICHLET SERIES
    Hlova, T. Ya
    Filevych, P., V
    [J]. CARPATHIAN MATHEMATICAL PUBLICATIONS, 2015, 7 (02) : 172 - 187
  • [2] The growth of entire Dirichlet series in terms of generalized orders
    Hlova, T. Ya.
    Filevych, P. V.
    [J]. SBORNIK MATHEMATICS, 2018, 209 (02) : 241 - 257
  • [3] Sheremeta M.M., 1993, ENTITE DIRICHLET SER