Rate of convergence of Euler approximations of solution to mixed stochastic differential equation involving Brownian motion and fractional Brownian motion

被引:8
作者
Mishura, Yuliya S. [1 ]
Shevchenko, Georgiy M. [1 ]
机构
[1] Kyiv Taras Shevchenko Natl Univ, Mech & Math Fac, Dept Probabil Stat & Actuarial Math, Volodymyrska 60, UA-01601 Kiev, Ukraine
关键词
Fractional Brownian motion; mixed stochastic differential equation; pathwise integral; Euler approximation;
D O I
10.1515/ROSE.2011.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a mixed stochastic differential equation involving both standard Brownian motion and fractional Brownian motion with Hurst parameter H > 1/2. The mean-square rate of convergence of Euler approximations of solution to this equation is obtained.
引用
收藏
页码:387 / 406
页数:20
相关论文
共 12 条
[1]  
[Anonymous], 1995, NUMERICAL INTEGRATIO
[2]  
Biagini F, 2008, PROBAB APPL SER, P1
[3]   Mixed fractional Brownian motion [J].
Cheridito, P .
BERNOULLI, 2001, 7 (06) :913-934
[4]   Differential Equations Driven by Rough Paths: An Approach via Discrete Approximation [J].
Davie, A. M. .
APPLIED MATHEMATICS RESEARCH EXPRESS, 2008, (01)
[5]  
Decreusefond L., 1998, ESAIM P, V5, P75
[6]   Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion [J].
Guerra, Joao ;
Nualart, David .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (05) :1053-1075
[7]  
Kloeden P. E., 1992, NUMERICAL SOLUTION S, V23
[8]   The existence and uniqueness of the solution of an integral equation driven by a p-semimartingale of special type [J].
Kubilius, K .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 98 (02) :289-315
[9]  
Mishura Y., 1929, STOCHASTIC CALCULUS
[10]   The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion [J].
Mishura, Yu ;
Shevchenko, G. .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2008, 80 (05) :489-511