ASYMPTOTICALLY AUTONOMOUS SEMIFLOWS - CHAIN RECURRENCE AND LYAPUNOV FUNCTIONS

被引:192
作者
MISCHAIKOW, K [1 ]
SMITH, H [1 ]
THIEME, HR [1 ]
机构
[1] ARIZONA STATE UNIV,DEPT MATH,TEMPE,AZ 85287
关键词
CHAIN RECURRENCE; ASYMPTOTICALLY AUTONOMOUS SEMIFLOW; LYAPUNOV FUNCTION;
D O I
10.2307/2154964
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the work of C. Conley, it is known that the omega limit set of a precompact orbit of an autonomous semiflow is a chain recurrent set. Here, we improve a result of L. Markus by showing that the omega limit set of a solution of an asymptotically autonomous semiflow is a chain recurrent set relative to the limiting autonomous semiflow. In the special case that there is a Lyapunov function for the limiting semiflow, sufficient conditions are given for an omega limit set of the asymptotically autonomous semiflow to be contained in a level set of the Lyapunov function.
引用
收藏
页码:1669 / 1685
页数:17
相关论文
共 20 条
[1]  
[Anonymous], 1981, SEMIDYNAMICAL SYSTEM
[3]   THE GRADIENT STRUCTURE OF A FLOW .1. [J].
CONLEY, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 :11-26
[4]  
CONLEY C, 1972, IBM RC3939 RES
[5]  
DAFERMOS CM, 1975, MATH SYST THEORY, V8, P142, DOI 10.1007/BF01762184
[6]   ABSTRACT OMEGA-LIMIT SETS, CHAIN RECURRENT SETS, AND BASIC SETS FOR FLOWS [J].
FRANKE, JE ;
SELGRADE, JF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 60 (OCT) :309-316
[7]  
Hale J. K., 1980, ORDINARY DIFFERENTIA
[8]  
Hale J. K., 1988, ASYMPTOTIC BEHAV DIS
[9]  
Jack K., 1993, INTRO FUNCTIONAL DIF, V99, DOI [10.1007/978-1-4612-4342-7, DOI 10.1007/978-1-4612-4342-7]
[10]  
LaSalle J.P., 1976, DYNAM SYST, P211, DOI DOI 10.1016/B978-0-12-164901-2.50021-0