Delta-sleep-inducing peptide (DSIP) stimulates the release of Met-enkephalin (Met-ENK) from superfused slices of the rodent lower brainstem in vitro. In our present study, DSIP (10(-10)-10(-9) M) induced a significant release of Met-ENK from medullary synaptosomes of rats. This DSIP-evoked release of Met-ENK was Ca2+ dependent and tetrodotoxin (TTX) insensitive. Furthermore, DSIP (10(-11)-10(-9) M) significantly increased (Ca2+)-Ca-45 uptake in medullary synaptosomes. These results demonstrate that DSIP acts directly on the nerve endings of Met-ENK-containing neurons to release this pentapeptide by generating a Ca2+ influx into these neurons. Effects of DSIP on Met-ENK release in other discrete brain regions were also studied. Significant DSIP-evoked Met-ENK release from synaptosomes was observed in the cortex, hypothalamus, and midbrain (at concentrations of 10(-10) and 10(-9) M) and in the hippocampus and thalamus (only at 10(-9) M), but not in the striatum. In the hypothalamus, the release of Leu-enkephalin from its synaptosomes was slightly, but not significantly, enhanced by DSIP (10(-10)-10(-8) M). Our findings demonstrate that DSIP triggered a Ca2+ influx in nerve endings to induce a subsequent release of Met-ENK from neurons in only certain brain regions.