NUMERICAL-SOLUTION OF THE D=INFINITY HUBBARD-MODEL - EVIDENCE FOR A MOTT TRANSITION

被引:244
作者
GEORGES, A [1 ]
KRAUTH, W [1 ]
机构
[1] ECOLE NORM SUPER,PHYS STAT LAB,F-75231 PARIS 05,FRANCE
关键词
D O I
10.1103/PhysRevLett.69.1240
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a numerical solution of the infinite-dimensional Hubbard model at finite temperature in the paramagnetic phase. The problem reduces to a single-impurity Anderson model supplemented by a self-consistency condition. Using Monte Carlo methods and complete enumeration we determine the imaginary-time Green's function, the density of doubly occupied sites, and the compressibility close to half filling. All three quantities present direct evidence for a Mott insulating phase above a critical value of U.
引用
收藏
页码:1240 / 1243
页数:4
相关论文
共 21 条
[1]   LOCALIZED MAGNETIC STATES IN METALS [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1961, 124 (01) :41-&
[2]   THERMODYNAMICS AND CORRELATION-FUNCTIONS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (03) :365-370
[3]   THERMODYNAMICS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS .2. CRITICAL-TEMPERATURE AND ORDER PARAMETER [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 79 (02) :295-299
[4]   FREE-ENERGY OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 82 (01) :37-41
[5]   Application of Gutzwiller's variational method to the metal-insulator transition [J].
Brinkman, W. F. ;
Rice, T. M. .
PHYSICAL REVIEW B-SOLID STATE, 1970, 2 (10) :4302-4304
[6]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483
[7]  
GEORGES A, 1991, IN PRESS P TRIESTE C
[8]   SCALING THEORY OF ASYMMETRIC ANDERSON MODEL [J].
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1978, 40 (06) :416-419
[9]  
HALDANE FDM, 1977, THESIS U CAMBRIDGE
[10]   MONTE-CARLO METHOD FOR MAGNETIC-IMPURITIES IN METALS [J].
HIRSCH, JE ;
FYE, RM .
PHYSICAL REVIEW LETTERS, 1986, 56 (23) :2521-2524