GLOBAL EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE WIGNER-POISSON AND SCHRODINGER-POISSON SYSTEMS

被引:85
|
作者
ILLNER, R [1 ]
ZWEIFEL, PF [1 ]
LANGE, H [1 ]
机构
[1] UNIV COLOGNE,FACHBEREICH MATH,W-3000 COLOGNE,GERMANY
关键词
D O I
10.1002/mma.1670170504
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global existence and uniqueness of classical solutions of the Wigner-Poisson and Schrodinger-Poisson systems of equations for both repulsive and attractive potentials. In the repulsive case, we prove decay estimates for the particle density, the potential and the solutions.
引用
收藏
页码:349 / 376
页数:28
相关论文
共 50 条
  • [31] EXISTENCE AND CONCENTRATION OF SOLUTIONS FOR SUBLINEAR SCHRODINGER-POISSON EQUATIONS
    Mao, Anmin
    Chen, Yusong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02): : 339 - 348
  • [32] Existence of multiple nontrivial solutions for a Schrodinger-Poisson system
    Chen, Shaowei
    Wang, Conglei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 787 - 793
  • [33] On Schrodinger-Poisson Systems
    Ambrosetti, Antonio
    MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) : 257 - 274
  • [34] GLOBAL EXISTENCE AND ASYMPTOTIC-BEHAVIOR FOR THE SOLUTION OF THE VLASOV-POISSON EQUATION
    BARDOS, C
    DEGOND, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (06): : 321 - 324
  • [35] Nonlinear stationary solutions of the Wigner and Wigner-Poisson equations
    Haas, F.
    Shukla, P. K.
    PHYSICS OF PLASMAS, 2008, 15 (11)
  • [36] Existence and Asymptotic Behaviour of Solutions for a Quasilinear Schrodinger-Poisson System in R3
    Wei, Chongqing
    Li, Anran
    Zhao, Leiga
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
  • [37] LOCALIZED NODAL SOLUTIONS FOR SCHRODINGER-POISSON SYSTEMS
    Wang, Xing
    He, Rui
    Liu, Xiangqing
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 1947 - 1970
  • [38] Multibump solutions for nonlinear Schrodinger-Poisson systems
    Yu, Mingzhu
    Chen, Haibo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4518 - 4529
  • [39] Existence and concentration behavior of solutions for the logarithmic Schrodinger-Poisson system with steep potential
    Peng, Xueqin
    Jia, Gao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (01):
  • [40] Existence and multiplicity results for the nonlinear Schrodinger-Poisson systems
    Yang, Ming-Hai
    Han, Zhi-Qing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) : 1093 - 1101