GLOBAL EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE WIGNER-POISSON AND SCHRODINGER-POISSON SYSTEMS

被引:85
作者
ILLNER, R [1 ]
ZWEIFEL, PF [1 ]
LANGE, H [1 ]
机构
[1] UNIV COLOGNE,FACHBEREICH MATH,W-3000 COLOGNE,GERMANY
关键词
D O I
10.1002/mma.1670170504
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove global existence and uniqueness of classical solutions of the Wigner-Poisson and Schrodinger-Poisson systems of equations for both repulsive and attractive potentials. In the repulsive case, we prove decay estimates for the particle density, the potential and the solutions.
引用
收藏
页码:349 / 376
页数:28
相关论文
共 21 条
[1]  
ADAMS RA, 1975, SOBOLEV SPACES, P107
[2]  
Bohun C. S., 1991, MATEMATICHE, V46, P429
[3]   THE 3-DIMENSIONAL WIGNER-POISSON PROBLEM - EXISTENCE, UNIQUENESS AND APPROXIMATION [J].
BREZZI, F ;
MARKOWICH, PA .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1991, 14 (01) :35-61
[4]  
DIAS JP, 1980, CR ACAD SCI A MATH, V290, P889
[5]   CONSERVATION-LAWS AND TIME DECAY FOR THE SOLUTIONS OF SOME NON-LINEAR SCHRODINGER-HARTREE EQUATIONS AND SYSTEMS [J].
DIAS, JP ;
FIGUEIRA, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 84 (02) :486-508
[6]  
DIRAC PAM, 1934, PRINCIPLES QUANTUM M
[7]   SMALL OSCILLATIONS IN A NUCLEAR VLASOV FLUID [J].
DITORO, M ;
LOMBARDO, U ;
RUSSO, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1985, 87 (02) :174-188
[8]  
Friedman A., 1969, PARTIAL DIFFERENTIAL
[9]  
GRECO D., 1956, RIC MAT, V5, P126
[10]  
IMRE K, 1967, J MATH PHYS, V8, P1197