WHITNEY THEOREM IN ULTRADIFFERENTIABLE CLASSES

被引:0
作者
CHAUMAT, J [1 ]
CHOLLET, AM [1 ]
机构
[1] UNIV LILLE 1,UFR MATH,F-59655 VILLENEUVE DASCQ,FRANCE
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1992年 / 315卷 / 08期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
J. Bruna [1] proves a Whitney extension theorem for strongly non-quasi-analytic Carleman classes. We give here a new constructive proof inspired by a paper of E. M. Dynkin [4]. We deduce from it a Whitney extension theorem for Beurling classes and a linear extension theorem.
引用
收藏
页码:901 / 906
页数:6
相关论文
共 8 条
[1]  
BRUNA J, 1980, J LOND MATH SOC, V22, P495
[2]  
COIFMAN R, 1972, SPRINGER LECTURE NOT, V242
[3]  
Hormander L., 1989, ANAL LINEAR PARTIAL
[4]  
MANDELBROJT S, 1952, SERIES ADHERENTES RE
[5]   ON BOREL,E. THEOREM [J].
PETZSCHE, HJ .
MATHEMATISCHE ANNALEN, 1988, 282 (02) :299-313
[6]  
PLESNIAK W, 1990, PUB IRMA LILLE, V21
[7]  
[No title captured]
[8]  
[No title captured]