Bounds for the dichromatic number of a generalized lexicographic product of digraphs

被引:3
|
作者
Pleanmani, Nopparat [1 ]
Panma, Sayan [1 ]
机构
[1] Chiang Mai Univ, Dept Math, Fac Sci, Chiang Mai 50200, Thailand
关键词
Digraph; acyclic set; digraph coloring; dichromatic number; lexicographic product; X-join; corona;
D O I
10.1142/S1793830916500348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset U subset of V ( D) is acyclic if it induces an acyclic subdigraph of a digraph D and the dichromatic number chi d( D) of D is defined to be the minimum integer n such that V(D) can be partitioned into n acyclic subsets. In this paper, we obtain lower and upper bounds for the dichromatic number of a generalized lexicographic product and the dichromatic number of a generalized corona of digraphs in terms of dichromatic numbers of those digraphs.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] On local antimagic chromatic number of lexicographic product graphs
    G.-C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 158 - 170
  • [22] On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs
    Szumny, Waldemar
    Wloch, Iwona
    Wloch, Andrzej
    DISCRETE MATHEMATICS, 2008, 308 (20) : 4616 - 4624
  • [23] A new upper bound of the basis number of the lexicographic product of graphs
    Jaradat, M. M. M.
    ARS COMBINATORIA, 2010, 97 : 423 - 442
  • [24] BOUNDS FOR THE PEBBLING NUMBER OF PRODUCT GRAPHS
    Pleanmani, Nopparat
    Nupo, Nuttawoot
    Worawiset, Somnuek
    TRANSACTIONS ON COMBINATORICS, 2022, 11 (04) : 317 - 326
  • [25] Total Chromatic Number for Certain Classes of Lexicographic Product Graphs
    Sandhiya, T. P.
    Geetha, J.
    Somasundaram, K.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (02) : 233 - 240
  • [26] THE STAR DICHROMATIC NUMBER
    Hochstaettler, Winfried
    Steiner, Raphael
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 277 - 298
  • [27] Note on the spanning-tree packing number of lexicographic product graphs
    Li, Hengzhe
    Li, Xueliang
    Mao, Yaping
    Yue, Jun
    DISCRETE MATHEMATICS, 2015, 338 (05) : 669 - 673
  • [28] Distance spectrum of the generalized lexicographic product of a graph with a family of regular graphs
    Tian, Fenglei
    Wang, Xinlei
    Wong, Dein
    ARS COMBINATORIA, 2018, 141 : 305 - 311
  • [29] Private Out-Domination Number of Generalized de Bruijn Digraphs
    Marimuthu, G.
    Johnson, B.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (02): : 504 - 517
  • [30] The digrundy number of digraphs
    Araujo-Pardo, Gabriela
    Jose Montellano-Ballesteros, Juan
    Olsen, Mika
    Rubio-Montiel, Christian
    DISCRETE APPLIED MATHEMATICS, 2022, 317 : 117 - 123