Bounds for the dichromatic number of a generalized lexicographic product of digraphs

被引:3
|
作者
Pleanmani, Nopparat [1 ]
Panma, Sayan [1 ]
机构
[1] Chiang Mai Univ, Dept Math, Fac Sci, Chiang Mai 50200, Thailand
关键词
Digraph; acyclic set; digraph coloring; dichromatic number; lexicographic product; X-join; corona;
D O I
10.1142/S1793830916500348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset U subset of V ( D) is acyclic if it induces an acyclic subdigraph of a digraph D and the dichromatic number chi d( D) of D is defined to be the minimum integer n such that V(D) can be partitioned into n acyclic subsets. In this paper, we obtain lower and upper bounds for the dichromatic number of a generalized lexicographic product and the dichromatic number of a generalized corona of digraphs in terms of dichromatic numbers of those digraphs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Bounds for the eccentricity spectral radius of join digraphs with a fixed dichromatic number
    Yang, Xiuwen
    Broersma, Hajo
    Wang, Ligong
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 241 - 257
  • [2] Domination in lexicographic product digraphs
    Liu, Juan
    Zhang, Xindong
    Meng, Jixiang
    ARS COMBINATORIA, 2015, 120 : 23 - 32
  • [3] On the information transmission delay of the lexicographic product of digraphs
    Feng Li
    Photonic Network Communications, 2019, 37 : 187 - 194
  • [4] On the information transmission delay of the lexicographic product of digraphs
    Li, Feng
    PHOTONIC NETWORK COMMUNICATIONS, 2019, 37 (02) : 187 - 194
  • [5] Some Notes on the Lexicographic Product of Digraphs
    Li, Feng
    Liang, Dong
    Zheng, Jiming
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 1083 - 1086
  • [6] Spectral radius of digraphs with given dichromatic number
    Lin, Huiqiu
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (12) : 2462 - 2467
  • [7] The (distance) signless Laplacian spectral radii of digraphs with given dichromatic number
    Li, Jinxi
    You, Lihua
    ARS COMBINATORIA, 2017, 132 : 257 - 267
  • [8] The geodetic number of the lexicographic product of graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    Tepeh, Aleksandra
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1693 - 1698
  • [9] Game chromatic number of lexicographic product graphs
    Alagammai, R.
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 216 - 220
  • [10] On the super domination number of lexicographic product graphs
    Dettlaff, M.
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    Zuazua, R.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 (118-129) : 118 - 129