EXISTENCE AND UNIQUENESS OF DENSITY CONSERVING SOLUTIONS TO THE COAGULATION-FRAGMENTATION EQUATIONS WITH STRONG FRAGMENTATION

被引:61
作者
DA COSTA, FP [1 ]
机构
[1] HERIOT WATT UNIV, DEPT MATH, EDINBURGH EH14 4AS, MIDLOTHIAN, SCOTLAND
关键词
D O I
10.1006/jmaa.1995.1210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:892 / 914
页数:23
相关论文
共 13 条
[1]  
Ball J.M., Carr J., The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Statist. Phys, 61, pp. 203-234, (1990)
[2]  
Ball J.M., Carr J., Penrose O., The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutions, Commun. Math. Phys, 104, pp. 657-692, (1986)
[3]  
Carr J., Asymptotic behaviour of solutions to the coagulation-fragmentation equations, I. The strong fragmentation case, Proc. Roy. Soc. Edinburgh Sect. A, 121, pp. 231-244, (1992)
[4]  
Da Costa F.P., Studies in Discrete Coagulation-Fragmentation Equations, Ph.D. Thesis, (1993)
[5]  
Kolmogorov A.N., Fomin S.V., Introductory Real Analysis, (1975)
[6]  
Leyvraz F., Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A: Math. Gen, 16, pp. 2861-2873, (1983)
[7]  
Leyvraz F., Tschudi H.R., Singularities in the kinetics of coagulation processes, J. Phys. A: Math. Gen, 14, pp. 3389-3405, (1981)
[8]  
McGrady E., Ziff R., The kinetics of cluster fragmentation and depolymerization, J. Phys. A: Math. Gen, 18, pp. 3027-3037, (1985)
[9]  
McLeod J.B., On an infinite set of non-linear differential equations, Quart. J. Math. Oxford, 13, pp. 119-128, (1962)
[10]  
McLeod J.B., On an infinite set of non-linear differential equations (II), Quart. J. Math. Oxford, 13, pp. 193-205, (1962)