THE EVALUATION OF MATRIX-ELEMENTS IN THE ANALYSIS OF ANHARMONIC MOLECULAR VIBRATIONS - OPTIMIZED EXPANSIONS AND QUADRATURES

被引:5
作者
SCHMIDT, PP
机构
[1] Office of Naval Research, Arlington, Virginia, 22217-5662
关键词
D O I
10.1002/qua.560530609
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This article presents methods for computing matrix elements with Cartesian Gaussian wave functions of potential energy operators that depend on functions of the form (r - r0)n exp[-a(r - r0)] as well as matrix elements of the class of polynomial many-body potentials developed by Murrell et al. The matrix elements arise in the analyses of anharmonic vibrations in molecules. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:663 / 677
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1986, NUMERICAL RECIPES
[2]   ABINITIO CALCULATIONS OF ELECTRONIC AND VIBRATIONAL ENERGIES OF HCO AND HOC [J].
BOWMAN, JM ;
BITTMAN, JS ;
HARDING, LB .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (02) :911-921
[3]   A MOVABLE BASIS METHOD TO CALCULATE VIBRATIONAL ENERGIES OF MOLECULES [J].
BOWMAN, JM ;
GAZDY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (03) :1774-1784
[4]  
BOWMAN JM, 1986, ACCOUNTS CHEM RES, V19, P207
[5]  
BOWMAN JM, 1989, J CHEM PHYS, V90, P2788
[6]   THEORETICAL-STUDY OF THE IR ABSORPTION-SPECTRUM OF HCN [J].
BRUNET, JP ;
FRIESNER, RA ;
WYATT, RE ;
LEFORESTIER, C .
CHEMICAL PHYSICS LETTERS, 1988, 153 (05) :425-432
[7]   CALCULATIONS OF HIGHLY EXCITED VIBRATIONAL ENERGIES OF HCN(N1, O, N3) - A TEST OF A 2-MODE MODEL, AND COMPARISON WITH EXPERIMENT [J].
GAZDY, B ;
BOWMAN, JM .
CHEMICAL PHYSICS LETTERS, 1990, 175 (05) :434-440
[8]   A SIMPLE-MODEL FOR A REACTION SURFACE [J].
HALL, GG .
THEORETICA CHIMICA ACTA, 1985, 67 (06) :439-447
[9]   SELF-CONSISTENT MOLECULAR-ORBITAL METHODS .I. USE OF GAUSSIAN EXPANSIONS OF SLATER-TYPE ATOMIC ORBITALS [J].
HEHRE, WJ ;
STEWART, RF ;
POPLE, JA .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (06) :2657-+
[10]   ONE-ELECTRON AND 2-ELECTRON INTEGRALS OVER CARTESIAN GAUSSIAN FUNCTIONS [J].
MCMURCHIE, LE ;
DAVIDSON, ER .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 26 (02) :218-231