BALANCING MINIMUM SPANNING-TREES AND SHORTEST-PATH TREES

被引:143
作者
KHULLER, S
RAGHAVACHARI, B
YOUNG, N
机构
[1] UNIV MARYLAND,INST ADV COMP STUDIES,COLLEGE PK,MD 20742
[2] UNIV TEXAS,DEPT COMP SCI,RICHARDSON,TX 75083
[3] PRINCETON UNIV,DEPT COMP SCI,PRINCETON,NJ 08544
基金
美国国家科学基金会;
关键词
MINIMUM SPANNING TREES; GRAPH ALGORITHMS; PARALLEL ALGORITHMS; SHORTEST PATHS;
D O I
10.1007/BF01294129
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We give a simple algorithm to find a spanning tree that simultaneously approximates a shortest-path tree and a minimum spanning tree. The algorithm provides a continuous tradeoff: given the two trees and a gamma > 0, the algorithm returns a spanning tree in which the distance between any vertex and the root of the shortest-path tree is at most 1 + root 2 gamma times the shortest-path distance, and yet the total weight of the tree is at most 1 + root 2/gamma times the weight of a minimum spanning tree. Our algorithm runs in linear time and obtains the best-possible tradeoff. It can be implemented on a CREW PRAM to run a logarithmic time using one processor per vertex.
引用
收藏
页码:305 / 321
页数:17
相关论文
共 20 条
[1]   ON SPARSE SPANNERS OF WEIGHTED GRAPHS [J].
ALTHOFER, I ;
DAS, G ;
DOBKIN, D ;
JOSEPH, D ;
SOARES, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (01) :81-100
[2]   ROUTING TO MULTIPLE DESTINATIONS IN COMPUTER-NETWORKS [J].
BHARATHKUMAR, K ;
JAFFE, JM .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (03) :343-351
[3]  
CHEW LP, 1989, J COMPUT SYST SCI, V39, P205, DOI 10.1016/0022-0000(89)90044-5
[4]  
CONG J, 1992, IEEE T COMPUT AID D, P739
[5]  
CONG J, 1992, P IEEE INT S CIRC SY, P2240
[6]  
Cormen TH., 1989, INTRO ALGORITHMS
[7]  
Dijkstra E.W., 1959, NUMER MATH, V1, P269, DOI [DOI 10.1007/BF01386390, 10.1007/BF01386390]
[8]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615
[9]   EFFICIENT ALGORITHMS FOR FINDING MINIMUM SPANNING-TREES IN UNDIRECTED AND DIRECTED-GRAPHS [J].
GABOW, HN ;
GALIL, Z ;
SPENCER, T ;
TARJAN, RE .
COMBINATORICA, 1986, 6 (02) :109-122
[10]  
JAJA J, 1991, INTRO PARALLEL ALGOR