INTERIOR REGULARITY FOR SOLUTIONS TO OBSTACLE PROBLEMS

被引:56
作者
MICHAEL, JH [1 ]
ZIEMER, WP [1 ]
机构
[1] INDIANA UNIV,BLOOMINGTON,IN 47405
关键词
D O I
10.1016/0362-546X(86)90113-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1427 / 1448
页数:22
相关论文
共 19 条
[1]  
BIROLI M, 1979, B UN MAT ITAL, V5, P598
[2]   POTENTIAL METHODS IN VARIATIONAL-INEQUALITIES [J].
CAFFARELLI, LA ;
KINDERLEHRER, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 37 :285-295
[3]  
CHARRIER P, 1980, CR ACAD SCI A MATH, V290, P9
[4]  
DIBENEDETTO E, 1984, HARNACK INEQUALITIES
[5]   LEBESGUE SET OF A FUNCTION WHOSE DISTRIBUTION DERIVATIVES ARE P-TH POWER SUMMABLE [J].
FEDERER, H ;
ZIEMER, WP .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (02) :139-&
[6]   VARIATIONAL INEQUALITIES WITH ONE-SIDED IRREGULAR OBSTACLES [J].
FREHSE, J ;
MOSCO, U .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :219-233
[7]  
FREHSE J, 1983, CR HEBD SEANC ACAD A, P571
[8]  
FREHSE J, 1981, PDE BANACH CTR PUBL, V10, P81
[9]  
Freshe J., 1982, ANN SCUOLA NORM SUP, V9, P105
[10]   REGULARITY CONDITION AT BOUNDARY FOR SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS [J].
GARIEPY, R ;
ZIEMER, WP .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 67 (01) :25-39