ENVELOPING-ALGEBRAS AND REPRESENTATIONS OF TOROIDAL LIE-ALGEBRAS

被引:42
作者
BERMAN, S
COX, B
机构
[1] University Of Saskatchewan, Saskatoon, SK
[2] University Of Montana, Missoula, MT
关键词
D O I
10.2140/pjm.1994.165.239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is about Toroidal Lie algebras which generalize the notion of an Affine Lie algebra. We study Verma type modules for these Toroidal algebras and prove an irreducibility criterion when the number of variables is two. We use the fact that the universal enveloping algebra is an Ore domain to obtain facts about the Verma type modules. Moreover, we are able to characterize the Affine Kac-Moody Lie algebra as those whose universal enveloping algebras are non-Noetherian Ore domains.
引用
收藏
页码:239 / 267
页数:29
相关论文
共 19 条
[1]  
Amayo R.K., 1974, INFINITE DIMENSIONAL
[3]  
BERMAN S, 1992, IN PRESS INVENT MATH
[4]  
FABBRI M, 1992, THESIS U ALBERTA
[5]  
FUTORNY V, 1991, IMAGINARY VERMA MODU
[6]  
HILTON PJ, 1970, COURSE HOMOLOGICAL A
[7]   CLASSIFICATION AND CONSTRUCTION OF QUASISIMPLE LIE-ALGEBRAS [J].
HOEGHKROHN, R ;
TORRESANI, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 89 (01) :106-136
[8]  
Jacobson N., 1962, LIE ALGEBRAS
[9]  
Kac V. G., 1990, INFINITE DIMENSIONAL